Genome-wide identification of the transcription factor family in pear () reveals evolution and functional divergence.

Runze Wang, Meiling Ming, Jiaming Li, Dongqing Shi, Xin Qiao, Leiting Li, Shaoling Zhang, Jun Wu
Author Information
  1. Runze Wang: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  2. Meiling Ming: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  3. Jiaming Li: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  4. Dongqing Shi: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  5. Xin Qiao: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  6. Leiting Li: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  7. Shaoling Zhang: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  8. Jun Wu: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.

Abstract

transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the family and its functional divergence in pear. In this study, a total of 95 genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the family, followed by rearrangement events. Purifying selection was the primary force driving gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the gene, together with partners and was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the and were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of genes in different biological processes, especially of pigmentation in pear.

Keywords

References

  1. J Exp Bot. 2012 Jan;63(2):695-709 [PMID: 22058406]
  2. Plant Physiol. 2009 Apr;149(4):1713-23 [PMID: 19211705]
  3. Nature. 2002 Feb 28;415(6875):1022-4 [PMID: 11875568]
  4. Nature. 2000 Dec 14;408(6814):796-815 [PMID: 11130711]
  5. Plant Cell. 1999 May;11(5):949-56 [PMID: 10330478]
  6. Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5 [PMID: 22053084]
  7. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3753-8 [PMID: 10716723]
  8. Science. 2000 Jul 21;289(5478):436-8 [PMID: 10903201]
  9. Plant Physiol. 2010 Aug;153(4):1619-29 [PMID: 20566708]
  10. Plant Cell Physiol. 2009 Dec;50(12):2210-22 [PMID: 19887540]
  11. Mol Phylogenet Evol. 2002 Jun;23(3):458-80 [PMID: 12099799]
  12. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9 [PMID: 15800040]
  13. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  14. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  15. Plant Cell. 1995 Oct;7(10):1569-82 [PMID: 7580252]
  16. Plant Cell Environ. 2015 Jun;38(6):1157-66 [PMID: 25311427]
  17. Annu Rev Plant Biol. 2006;57:761-80 [PMID: 16669781]
  18. J Exp Bot. 2016 Mar;67(5):1275-84 [PMID: 26687179]
  19. J Biol Chem. 1983 Dec 25;258(24):15245-54 [PMID: 6317690]
  20. Mol Biol Evol. 2000 Jan;17(1):32-43 [PMID: 10666704]
  21. Gene. 2013 Oct 10;528(2):183-94 [PMID: 23891821]
  22. Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 [PMID: 19920124]
  23. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  24. J Exp Bot. 2015 May;66(9):2659-72 [PMID: 25750421]
  25. Bioinformatics. 2015 Apr 15;31(8):1296-7 [PMID: 25504850]
  26. Plant Cell. 2002 Jun;14(6):1359-75 [PMID: 12084832]
  27. Nat Commun. 2013;4:2280 [PMID: 23955420]
  28. BMC Evol Biol. 2006 Mar 24;6:29 [PMID: 16563161]
  29. Mol Genet Genomics. 2015 Feb;290(1):239-55 [PMID: 25216934]
  30. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328-33 [PMID: 10805792]
  31. Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6 [PMID: 25414356]
  32. Trends Plant Sci. 2000 Nov;5(11):471-6 [PMID: 11077255]
  33. Nucleic Acids Res. 2013 Jan;41(Database issue):D1152-8 [PMID: 23180799]
  34. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  35. Genome. 2012 Mar;55(3):245-56 [PMID: 22376137]
  36. Mol Biol Evol. 2002 Jun;19(6):908-17 [PMID: 12032247]
  37. Gene. 2005 Mar 14;347(2):183-98 [PMID: 15777618]
  38. Plant J. 2008 Mar;53(5):814-27 [PMID: 18036197]
  39. J Plant Physiol. 2008 May 26;165(8):886-94 [PMID: 17766004]
  40. Plant J. 2013 May;74(4):638-51 [PMID: 23425305]
  41. Plant Physiol. 2013 Jun;162(2):885-96 [PMID: 23629835]
  42. PLoS One. 2015 Nov 04;10(11):e0142112 [PMID: 26536358]
  43. Trends Plant Sci. 2006 May;11(5):224-31 [PMID: 16616581]
  44. Mol Biol Evol. 1985 Mar;2(2):150-74 [PMID: 3916709]
  45. Plant Cell. 2003 Nov;15(11):2603-11 [PMID: 14555696]
  46. Plant Physiol. 2008 Mar;146(3):1182-92 [PMID: 18203871]
  47. Nature. 2000 May 11;405(6783):200-3 [PMID: 10821278]
  48. Nat Protoc. 2007;2(7):1565-72 [PMID: 17585298]
  49. J Exp Bot. 2002 May;53(371):1025-36 [PMID: 11971914]
  50. Trends Plant Sci. 2013 Sep;18(9):477-83 [PMID: 23870661]
  51. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 [PMID: 7584402]
  52. Sci Rep. 2016 Feb 09;6:20695 [PMID: 26856238]
  53. Plant J. 2000 Feb;21(4):351-60 [PMID: 10758486]
  54. Plant J. 2007 Nov;52(4):690-9 [PMID: 17877710]
  55. PLoS One. 2014 Apr 03;9(4):e92644 [PMID: 24699266]
  56. Biol Chem. 1997 Oct;378(10):1079-101 [PMID: 9372178]
  57. BMC Plant Biol. 2015 Feb 07;15:41 [PMID: 25848674]
  58. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4793-8 [PMID: 8643482]
  59. Plant Cell. 2002 Oct;14(10):2463-79 [PMID: 12368498]
  60. Plant J. 2008 Sep;55(6):940-53 [PMID: 18532978]
  61. Gene. 2003 Oct 16;316:1-21 [PMID: 14563547]
  62. New Phytol. 2013 Sep;199(4):1060-1068 [PMID: 23701123]
  63. Genetics. 2001 Jul;158(3):1227-34 [PMID: 11454770]
  64. Mol Biol Evol. 2002 Jun;19(6):801-14 [PMID: 12032236]
  65. Plant J. 2007 Jun;50(5):873-85 [PMID: 17470057]
  66. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  67. Plant Cell Physiol. 2013 Jul;54(7):1132-51 [PMID: 23624675]
  68. Tree Physiol. 2013 Jun;33(6):654-67 [PMID: 23761324]
  69. Science. 2002 Apr 12;296(5566):275-6 [PMID: 11951024]
  70. BMC Plant Biol. 2014 Nov 30;14:319 [PMID: 25433802]
  71. Gene. 2015 Jan 25;555(2):277-90 [PMID: 25447908]
  72. Gene Expr Patterns. 2016 Jan;20(1):11-21 [PMID: 26547040]
  73. Nature. 2001 Feb 15;409(6822):847-9 [PMID: 11237007]
  74. Semin Cell Dev Biol. 2010 Feb;21(1):118-28 [PMID: 19944177]
  75. Mol Biol Evol. 2005 Apr;22(4):1107-18 [PMID: 15689528]
  76. J Mol Evol. 2004 Aug;59(2):177-89 [PMID: 15486692]
  77. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  78. PLoS Comput Biol. 2011 Oct;7(10):e1002195 [PMID: 22039361]
  79. Plant Cell Rep. 2015 Feb;34(2):189-98 [PMID: 25323492]
  80. Nucleic Acids Res. 2009 Jan;37(Database issue):D404-7 [PMID: 18957445]
  81. BMC Genomics. 2007 Jul 18;8:242 [PMID: 17640358]
  82. Nature. 2001 Jan 25;409(6819):525-9 [PMID: 11206550]
  83. Cell. 1994 Jul 29;78(2):203-9 [PMID: 7913881]
  84. J Exp Bot. 2012 Jan;63(2):797-807 [PMID: 22071267]
  85. Plant Physiol. 2009 Jan;149(1):354-69 [PMID: 18997115]
  86. J Exp Bot. 2014 Sep;65(17):4985-95 [PMID: 24948678]
  87. Plant Cell. 2013 Apr;25(4):1288-303 [PMID: 23613199]
  88. Genetics. 1998 Jun;149(2):765-83 [PMID: 9611190]
  89. Plant Cell Rep. 2012 Feb;31(2):281-9 [PMID: 21987119]
  90. Plant J. 2007 Mar;49(6):981-94 [PMID: 17319847]
  91. Plant Cell. 2009 Oct;21(10):3008-25 [PMID: 19820190]
  92. Plant Cell. 2003 Apr;15(4):914-25 [PMID: 12671087]
  93. Nature. 1991 Sep 5;353(6339):31-7 [PMID: 1715520]
  94. Eur J Biochem. 1995 Apr 1;229(1):1-13 [PMID: 7744019]
  95. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  96. Mol Genet Genomics. 2006 Jan;275(1):44-54 [PMID: 16333667]
  97. Annu Rev Immunol. 2003;21:139-76 [PMID: 12414722]
  98. Plant J. 2013 Mar;73(6):1044-56 [PMID: 23236986]
  99. Plant Cell. 2003 Jul;15(7):1538-51 [PMID: 12837945]
  100. Nature. 2000 Apr 13;404(6779):766-70 [PMID: 10783890]
  101. Genome Res. 2013 Feb;23(2):396-408 [PMID: 23149293]
  102. Mol Biol Evol. 2003 Sep;20(9):1435-47 [PMID: 12777513]
  103. Nucleic Acids Res. 1999 Jan 1;27(1):297-300 [PMID: 9847208]
  104. EMBO J. 1996 Aug 15;15(16):4330-43 [PMID: 8861961]
  105. Plant Cell Environ. 2009 Mar;32(3):286-99 [PMID: 19054348]
  106. Gene. 2006 Aug 15;378:84-94 [PMID: 16831523]
  107. J Mol Evol. 2006 Jun;62(6):708-17 [PMID: 16752211]
  108. PLoS One. 2016 Aug 08;11(8):e0159421 [PMID: 27500731]
  109. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1306-11 [PMID: 11158635]
  110. Science. 2000 Dec 15;290(5499):2105-10 [PMID: 11118137]
  111. Curr Biol. 2004 Nov 9;14(21):1935-40 [PMID: 15530395]
  112. Plant J. 2009 Oct;60(1):1-9 [PMID: 19453449]
  113. Proc Biol Sci. 1994 May 23;256(1346):119-24 [PMID: 8029240]
  114. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5737-42 [PMID: 19325131]
  115. Eur J Biochem. 1999 Jun;262(2):247-57 [PMID: 10336605]
  116. BMC Genomics. 2012 Dec 12;13:700 [PMID: 23234335]
  117. Genetics. 2004 Mar;166(3):1553-60 [PMID: 15082568]
  118. Mol Biol Evol. 2011 Mar;28(3):1217-28 [PMID: 21087944]
  119. Science. 2000 Jun 2;288(5471):1613-6 [PMID: 10834834]
  120. Cell Res. 2010 Mar;20(3):299-313 [PMID: 20038961]
  121. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1910-5 [PMID: 14764899]
  122. J Exp Bot. 2016 Jan;67(1):239-57 [PMID: 26466664]
  123. Plant Cell. 1995 Jul;7(7):1071-1083 [PMID: 12242398]
  124. Mol Phylogenet Evol. 2003 Dec;29(3):464-89 [PMID: 14615187]
  125. Plant J. 1991 Sep;1(2):255-66 [PMID: 1688249]

Word Cloud

Created with Highcharts 10.0.0peargenesanalysistranscriptionfamilyfunctionaldivergencegenerolesprocessesfruitPearinformationthreesubfamiliesselectionevolutionanthocyaninfactorfactorsplaysignificantplantdevelopmentalfloralorganconformationfloweringtimedevelopmentthird-mostcrucialtemperatecropfullysequencedHoweverlimitedstudytotal95identifiedgenomeclassifiedtwotypesphylogeneticTypedividedtypeII14Syntenysuggestedwhole-genomeduplicationsplayedkeyexpansionfollowedrearrangementeventsPurifyingprimaryforcedrivingonepairspresentedcodonsitespositiveFull-scaleexpressionvegetativereproductiveorgansprovidedprovedtranscriptionalreversePCRFurthermoretogetherpartnersconfirmedactivatepromotersstructuralpathwayreddualluciferaseassayadditiondeducedinvolvingregulationsynthesisresponselighttemperaturechangesresultsprovidesolidfoundationfuturedifferentbiologicalespeciallypigmentationGenome-wideidentificationrevealsAnthocyaninFunctionalMADS-boxTranscription

Similar Articles

Cited By