Development of a rapid MALDI-TOF MS based epidemiological screening method using MRSA as a model organism.

Åsa Lindgren, Nahid Karami, Roger Karlsson, Christina Åhrén, Martin Welker, Edward R B Moore, Liselott Svensson Stadler
Author Information
  1. Åsa Lindgren: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. asa.lindgren@microbio.gu.se. ORCID
  2. Nahid Karami: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
  3. Roger Karlsson: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
  4. Christina Åhrén: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
  5. Martin Welker: Unit Microbiology, R&D Microbiology, bioMérieux SA, La Balme Les Grottes, France.
  6. Edward R B Moore: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
  7. Liselott Svensson Stadler: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Abstract

In this study we present a method using whole cell MALDI-TOF MS and VITEK MS RUO/SARAMIS as a rapid epidemiological screening tool. MRSA was used as a model organism for setting up the screening strategy. A collection of well-characterised MRSA strains representing the 19 most common Pulsed-Field Gel Electrophoresis (PFGE)-types in the region of South-West Sweden for the past 20 years was analysed with MALDI-TOF MS. A total of 111 MRSA strains were used for creating 19 PFGE-specific Superspectra using VITEK MS RUO/SARAMIS. Prior to performing the final analysis, the 19 Superspectra were combined into ten groups displaying similar peak patterns, hereafter named "MALDI-types". Two-hundred fifty-five MRSA strains were analysed to test the constructed Superspectra/MALDI-type database. Matches to the Superspectra above a threshold of 65% (corresponding to the number of matched peaks in the Superspectrum) were considered as positive assignment of a strain to a MALDI-type. The median peak matching value for correct assignment of a strain to a MALDI-type was 78% (range 65.3-100%). In total, 172 strains (67.4%) were assigned to the correct MALDI-type and only 5.5% of the strains were incorrectly assigned to another MALDI-type than the expected based on the PFGE-type of the strain. We envision this methodology as a cost-efficient step to be used as a first screening strategy in the typing scheme of MRSA isolates, to exclude epidemiological relatedness of isolates or to identify the need for further typing.

References

  1. Int J Med Microbiol. 2015 Dec;305(8):838-47 [PMID: 26365166]
  2. Clin Microbiol Infect. 2016 Feb;22(2):161.e1-161.e7 [PMID: 26482268]
  3. Anaerobe. 2013 Apr;20:20-6 [PMID: 23485355]
  4. J Clin Microbiol. 2015 Mar;53(3):760-5 [PMID: 25056329]
  5. PLoS One. 2015 Apr 29;10(4):e0122457 [PMID: 25923527]
  6. Rapid Commun Mass Spectrom. 1996;10(10):1227-32 [PMID: 8759332]
  7. J Clin Microbiol. 2007 Jun;45(6):1830-7 [PMID: 17428929]
  8. Syst Appl Microbiol. 2015 Jul;38(5):315-22 [PMID: 25944783]
  9. Science. 2010 Jan 22;327(5964):469-74 [PMID: 20093474]
  10. Int J Antimicrob Agents. 2012 Apr;39(4):273-82 [PMID: 22230333]
  11. PLoS One. 2014 Jul 08;9(7):e101924 [PMID: 25003758]
  12. PLoS One. 2014 May 20;9(5):e97833 [PMID: 24846009]
  13. Int J Food Microbiol. 2015 Jun 2;202:1-9 [PMID: 25747262]
  14. J Microbiol Methods. 2015 Nov;118:128-32 [PMID: 26381662]
  15. Euro Surveill. 2015 Apr 30;20(17):null [PMID: 25955776]
  16. J Clin Microbiol. 2015 Jul;53(7):2215-24 [PMID: 25926500]
  17. J Hosp Infect. 2014 Oct;88(2):72-7 [PMID: 25085462]
  18. Clin Microbiol Infect. 2014 Feb;20(2):O124-31 [PMID: 23927001]
  19. Curr Opin Crit Care. 2013 Oct;19(5):432-9 [PMID: 23856896]
  20. PLoS One. 2016 Feb 09;11(2):e0148772 [PMID: 26859765]
  21. J Clin Microbiol. 2016 Feb;54(2):445-8 [PMID: 26582829]
  22. Clin Microbiol Infect. 2009 Feb;15(2):112-9 [PMID: 19291142]
  23. Clin Microbiol Infect. 2007 Oct;13 Suppl 3:1-46 [PMID: 17716294]
  24. Cell Microbiol. 2012 Oct;14(10):1513-21 [PMID: 22747834]
  25. Int J Med Microbiol. 2011 Jan;301(1):64-8 [PMID: 20728405]
  26. J Clin Microbiol. 2013 Mar;51(3):814-9 [PMID: 23269731]
  27. J Microbiol Methods. 2014 May;100:58-69 [PMID: 24614010]
  28. Electrophoresis. 2012 Aug;33(15):2355-64 [PMID: 22887156]
  29. J Clin Microbiol. 2013 Jun;51(6):1809-17 [PMID: 23554199]
  30. Proteomics. 2011 Aug;11(15):3143-53 [PMID: 21726051]
  31. Int J Med Microbiol. 2014 Nov;304(8):1018-23 [PMID: 25116838]

MeSH Term

Bacterial Typing Techniques
Databases, Factual
Epidemiological Monitoring
Humans
Methicillin-Resistant Staphylococcus aureus
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Staphylococcal Infections

Word Cloud

Created with Highcharts 10.0.0MRSAMSstrainsscreeningMALDI-typeusingMALDI-TOFepidemiologicalused19SuperspectrastrainmethodVITEKRUO/SARAMISrapidmodelorganismstrategyanalysedtotalpeakassignmentcorrectassignedbasedtypingisolatesstudypresentwholecelltoolsettingcollectionwell-characterisedrepresentingcommonPulsed-FieldGelElectrophoresisPFGE-typesregionSouth-WestSwedenpast20 years111creatingPFGE-specificPriorperformingfinalanalysiscombinedtengroupsdisplayingsimilarpatternshereafternamed"MALDI-types"Two-hundredfifty-fivetestconstructedSuperspectra/MALDI-typedatabaseMatchesthreshold65%correspondingnumbermatchedpeaksSuperspectrumconsideredpositivemedianmatchingvalue78%range653-100%172674%55%incorrectlyanotherexpectedPFGE-typeenvisionmethodologycost-efficientstepfirstschemeexcluderelatednessidentifyneedDevelopment

Similar Articles

Cited By (2)