Human-in-the-loop Bayesian optimization of wearable device parameters.

Myunghee Kim, Ye Ding, Philippe Malcolm, Jozefien Speeckaert, Christoper J Siviy, Conor J Walsh, Scott Kuindersma
Author Information
  1. Myunghee Kim: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America. ORCID
  2. Ye Ding: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America.
  3. Philippe Malcolm: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America.
  4. Jozefien Speeckaert: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America.
  5. Christoper J Siviy: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America.
  6. Conor J Walsh: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America.
  7. Scott Kuindersma: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America.

Abstract

The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signal-to-noise ratio. We evaluate the use of Bayesian optimization-a family of sample-efficient, noise-tolerant, and global optimization methods-for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (± 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01).

References

  1. J Neuroeng Rehabil. 2015 May 01;12:43 [PMID: 25928176]
  2. J Sports Sci Med. 2006 Sep 01;5(3):440-8 [PMID: 24353462]
  3. J Appl Physiol (1985). 2014 Dec 1;117(11):1406-15 [PMID: 25257873]
  4. J Neuroeng Rehabil. 2016 May 12;13(1):43 [PMID: 27169361]
  5. J Biomech. 2016 Oct 3;49(14):3452-3459 [PMID: 27702444]
  6. IEEE Trans Biomed Eng. 2008 Sep;55(9):2143-51 [PMID: 18713683]
  7. Sci Rep. 2014 Dec 03;4:7213 [PMID: 25467389]
  8. Intensive Care Med. 2000 Nov;26(11):1612-8 [PMID: 11193266]
  9. J Exp Biol. 2017 Jun 01;220(Pt 11):2082-2095 [PMID: 28341663]
  10. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):197-202 [PMID: 3203667]
  11. PLoS One. 2014 Jan 22;9(1):e86427 [PMID: 24466088]
  12. IEEE Int Conf Rehabil Robot. 2017 Jul;2017:498-504 [PMID: 28813869]
  13. Trends Endocrinol Metab. 2016 Feb;27(2):105-117 [PMID: 26754340]
  14. Gait Posture. 2013 Jul;38(3):495-9 [PMID: 23465319]
  15. Traffic. 2015 Jul;16(7):691-711 [PMID: 25783006]
  16. J Neuroeng Rehabil. 2017 Apr 27;14(1):35 [PMID: 28449684]
  17. J Biomech. 2007;40(12):2636-44 [PMID: 17275829]
  18. PLoS One. 2015 Aug 19;10(8):e0135342 [PMID: 26288361]
  19. Science. 2017 Jun 23;356(6344):1280-1284 [PMID: 28642437]
  20. Sci Robot. 2017 Jan 18;2(2): [PMID: 33157865]
  21. J Neuroeng Rehabil. 2016 Jan 28;13:4 [PMID: 26817449]
  22. Med Sci Sports Exerc. 2002 Dec;34(12):2057-61 [PMID: 12471316]
  23. J Neuroeng Rehabil. 2016 Oct 3;13(1):87 [PMID: 27716439]
  24. IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):119-130 [PMID: 26849868]
  25. Hum Nutr Clin Nutr. 1987 Nov;41(6):463-71 [PMID: 3429265]
  26. IEEE Int Conf Robot Autom. 2015 May;2015:6445-6450 [PMID: 27570639]
  27. J Neuroeng Rehabil. 2015 Nov 04;12:97 [PMID: 26536868]
  28. IEEE Int Conf Rehabil Robot. 2017 Jul;2017:246-251 [PMID: 28813826]
  29. Neuroimage. 2016 Apr 1;129:320-334 [PMID: 26804778]
  30. J Clin Anesth. 2006 Mar;18(2):87-95 [PMID: 16563324]
  31. PLoS One. 2013;8(2):e56137 [PMID: 23418524]

Grants

  1. P20 GM109090/NIGMS NIH HHS

MeSH Term

Adult
Bayes Theorem
Energy Metabolism
Female
Humans
Male
Robotics
Signal-To-Noise Ratio
Walking
Young Adult

Word Cloud

Created with Highcharts 10.0.0optimizationcontrolparametersBayesianp<001walkingworkbasedusemetaboliccostexperimentalnear-optimalsteptimeconvergenceminutesincreasingcapabilitiesexoskeletonspoweredprostheticsassistancepavedwaysophisticatedindividualizedstrategiesresponseopportunityrecenthuman-in-the-loopconsideredproblemautomaticallytuningrealtimephysiologicalmeasurementsHowevercommonperformancemetriccreatessignificantchallengesduelongmeasurementtimeslowsignal-to-noiseratioevaluateoptimization-afamilysample-efficientnoise-tolerantglobalmethods-forquicklyidentifyingmanagecomplexityprovidecomparisonsrelatedconsidertaskminimizingoptimizingfrequenciesunaidedhumansubjectsComparedexistingapproachgradientdescentidentifiedfrequencyfaster12smallerinter-subjectvariability±2loweroverallenergyexpenditureHuman-in-the-loopwearabledevice

Similar Articles

Cited By