Proteomic footprint of myocardial ischemia/reperfusion injury: Longitudinal study of the at-risk and remote regions in the pig model.

Aleksandra Binek, Rodrigo Fernández-Jiménez, Inmaculada Jorge, Emilio Camafeita, Juan Antonio López, Navratan Bagwan, Carlos Galán-Arriola, Andres Pun, Jaume Agüero, Valentin Fuster, Borja Ibanez, Jesús Vázquez
Author Information
  1. Aleksandra Binek: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. ORCID
  2. Rodrigo Fernández-Jiménez: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  3. Inmaculada Jorge: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  4. Emilio Camafeita: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. ORCID
  5. Juan Antonio López: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  6. Navratan Bagwan: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  7. Carlos Galán-Arriola: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  8. Andres Pun: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  9. Jaume Agüero: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  10. Valentin Fuster: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
  11. Borja Ibanez: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. bibanez@cnic.es.
  12. Jesús Vázquez: Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. jvazquez@cnic.es. ORCID

Abstract

Reperfusion alters post-myocardial infarction (MI) healing; however, very few systematic studies report the early molecular changes following ischemia/reperfusion (I/R). Alterations in the remote myocardium have also been neglected, disregarding its contribution to post-MI heart failure (HF) development. This study characterizes protein dynamics and contractile abnormalities in the ischemic and remote myocardium during one week after MI. Closed-chest 40 min I/R was performed in 20 pigs sacrificed at 120 min, 24 hours, 4days, and 7days after reperfusion (n = 5 per group). Myocardial contractility was followed up by cardiac magnetic resonance (CMR) and tissue samples were analyzed by multiplexed quantitative proteomics. At early reperfusion (120 min), the ischemic area showed a coordinated upregulation of inflammatory processes, whereas interstitial proteins, angiogenesis and cardio-renal signaling processes increased at later reperfusion (day 4 and 7). Remote myocardium showed decreased contractility at 120 min- and 24 h-CMR accompanied by transient alterations in contractile and mitochondrial proteins. Subsequent recovery of regional contractility was associated with edema formation on CMR and increases in inflammation and wound healing proteins on post-MI day 7. Our results establish for the first time the altered protein signatures in the ischemic and remote myocardium early after I/R and might have implications for new therapeutic targets to improve early post-MI remodeling.

References

  1. Circulation. 2017 Oct 3;136(14 ):1288-1300 [PMID: 28687712]
  2. JACC Cardiovasc Imaging. 2012 Sep;5(9):884-93 [PMID: 22974800]
  3. Lancet. 2014 May 31;383(9932):1933-43 [PMID: 24831770]
  4. Circ Res. 2011 May 13;108(10):1165-9 [PMID: 21527739]
  5. Mol Cell Proteomics. 2008 Jun;7(6):1135-45 [PMID: 18303013]
  6. J Am Coll Cardiol. 2015 Feb 24;65(7):684-97 [PMID: 25677430]
  7. Circ Res. 2016 Jul 8;119(2):237-48 [PMID: 27142162]
  8. Curr Drug Targets. 2015;16(8):904-11 [PMID: 25915487]
  9. Basic Res Cardiol. 2016 Sep;111(5):54 [PMID: 27435289]
  10. Basic Res Cardiol. 2015 Mar;110(2):15 [PMID: 25702039]
  11. Nature. 2014 Nov 20;515(7527):431-435 [PMID: 25383517]
  12. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  13. Mol Cell Proteomics. 2012 Nov;11(11):1475-88 [PMID: 22865924]
  14. Circ Res. 2017 Aug 4;121(4):439-450 [PMID: 28596216]
  15. Mol Cell Proteomics. 2016 Jan;15(1):246-55 [PMID: 26582072]
  16. Cardiovasc Res. 2009 Feb 15;81(3):457-64 [PMID: 19047340]
  17. Cardiovasc Res. 2014 May 1;102(2):240-8 [PMID: 24501331]
  18. Basic Res Cardiol. 2015 Mar;110(2):20 [PMID: 25725809]
  19. Cardiovasc Pathol. 2010 Jan-Feb;19(1):22-8 [PMID: 19775915]
  20. Basic Res Cardiol. 2016 Mar;111(2):18 [PMID: 26924441]
  21. Nat Rev Cardiol. 2010 Jun;7(6):334-44 [PMID: 20458341]
  22. Cardiovasc Res. 2009 Feb 15;81(3):482-90 [PMID: 19050008]
  23. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  24. J Cardiovasc Magn Reson. 2009 Jul 09;11:22 [PMID: 19589148]
  25. Basic Res Cardiol. 2014;109(6):444 [PMID: 25248433]
  26. J Mol Cell Cardiol. 2010 Mar;48(3):558-63 [PMID: 19559709]
  27. Heart Rhythm. 2016 May;13(5):1131-9 [PMID: 26776558]
  28. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  29. Bioinformatics. 2010 Apr 1;26(7):966-8 [PMID: 20147306]
  30. Proteomics. 2015 Aug;15(15):2560-7 [PMID: 26033914]
  31. Circulation. 2012 Feb 14;125(6):789-802 [PMID: 22261194]
  32. Circ Cardiovasc Qual Outcomes. 2012 Jul 1;5(4):594-600 [PMID: 22811505]
  33. J Proteome Res. 2008 Nov;7(11):5004-16 [PMID: 18922030]
  34. J Proteome Res. 2009 Apr;8(4):1792-6 [PMID: 19714873]
  35. J Cardiovasc Magn Reson. 2015 Nov 04;17:92 [PMID: 26538198]
  36. Pharmacol Rev. 2014 Oct;66(4):1142-74 [PMID: 25261534]
  37. Nature. 2005 Oct 13;437(7061):1032-7 [PMID: 16136080]
  38. J Mol Cell Cardiol. 2015 Jan;78:23-34 [PMID: 25446182]
  39. J Proteome Res. 2014 Mar 7;13(3):1234-47 [PMID: 24512137]
  40. J Am Coll Cardiol. 2015 Apr 14;65(14):1454-71 [PMID: 25857912]
  41. Circulation. 2015 Sep 1;132(9):852-72 [PMID: 26195497]
  42. J Proteome Res. 2015 Feb 6;14(2):700-10 [PMID: 25494653]
  43. Proc Natl Acad Sci U S A. 2016 May 24;113(21):E3039-47 [PMID: 27162358]
  44. Nat Rev Cardiol. 2010 Jan;7(1):30-7 [PMID: 19949426]
  45. Mol Cell Proteomics. 2016 May;15(5):1740-60 [PMID: 26893027]
  46. Mol Cell Proteomics. 2012 Sep;11(9):800-13 [PMID: 22647871]
  47. Brief Bioinform. 2003 Sep;4(3):260-78 [PMID: 14582520]
  48. J Am Coll Cardiol. 2015 Feb 3;65(4):315-23 [PMID: 25460833]
  49. N Engl J Med. 2013 Sep 5;369(10):901-9 [PMID: 24004117]
  50. J Am Coll Cardiol. 2015 Aug 18;66(7):816-828 [PMID: 26271065]
  51. Curr Protoc Bioinformatics. 2009 Sep;Chapter 13:Unit 13.11 [PMID: 19728287]
  52. Basic Res Cardiol. 2015 Mar;110(2):13 [PMID: 25680868]
  53. Mol Cell Proteomics. 2014 Oct;13(10):2752-64 [PMID: 24969035]
  54. Circulation. 2000 Jun 27;101(25):2981-8 [PMID: 10869273]

MeSH Term

Animals
Disease Models, Animal
Edema, Cardiac
Humans
Longitudinal Studies
Male
Myocardial Contraction
Myocardial Infarction
Myocardial Reperfusion Injury
Myocardium
Proteomics
Sus scrofa

Word Cloud

Created with Highcharts 10.0.0earlyremotemyocardiumI/Rpost-MIischemicreperfusioncontractilityproteinsMIhealingischemia/reperfusionstudyproteincontractile120 minCMRshowedprocessesday7Reperfusionalterspost-myocardialinfarctionhoweversystematicstudiesreportmolecularchangesfollowingAlterationsalsoneglecteddisregardingcontributionheartfailureHFdevelopmentcharacterizesdynamicsabnormalitiesoneweekClosed-chest40 minperformed20pigssacrificed24 hours4days7daysn = 5pergroupMyocardialfollowedcardiacmagneticresonancetissuesamplesanalyzedmultiplexedquantitativeproteomicsareacoordinatedupregulationinflammatorywhereasinterstitialangiogenesiscardio-renalsignalingincreasedlater4Remotedecreased120 min-24 h-CMRaccompaniedtransientalterationsmitochondrialSubsequentrecoveryregionalassociatededemaformationincreasesinflammationwoundresultsestablishfirsttimealteredsignaturesmightimplicationsnewtherapeutictargetsimproveremodelingProteomicfootprintmyocardialinjury:Longitudinalat-riskregionspigmodel

Similar Articles

Cited By