On mechanism of antioxidant effect of fullerenols.

A S Sachkova, E S Kovel, G N Churilov, O A Guseynov, A A Bondar, I A Dubinina, N S Kudryasheva
Author Information
  1. A S Sachkova: National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
  2. E S Kovel: Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russia.
  3. G N Churilov: Institute of Physics SB RAS, Krasnoyarsk 660036, Russia.
  4. O A Guseynov: Siberian Federal University, Krasnoyarsk 660041, Russia.
  5. A A Bondar: SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
  6. I A Dubinina: Institute of Physics SB RAS, Krasnoyarsk 660036, Russia.
  7. N S Kudryasheva: Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russia.

Abstract

Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic toxicants of oxidative type - 1,4-benzoquinone and potassium ferricyanide. Two fullerenol preparations were tested: СО(ОН) and mixture of two types of fullerenols СО(ОН)+СО(ОН). Bacteria-based and enzyme-based bioluminescent assays were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes. The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1) ultralow concentrations of fullerenols were active ( 10-10 and 10-10 g/L, respectively), (2) no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3) detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the detoxifying mechanism. Catalytic activity of fullerenol (10 g/L) in NADH-dependent enzymatic reactions was demonstrated and supposed to contribute to adaptive bacterial response.

Keywords

References

  1. Anal Chim Acta. 2008 Feb 4;608(1):2-29 [PMID: 18206990]
  2. J Environ Radioact. 2015 Apr;142:68-77 [PMID: 25644753]
  3. Trends Biotechnol. 2004 Jun;22(6):295-303 [PMID: 15158059]
  4. Photochem Photobiol Sci. 2007 Jan;6(1):35-40 [PMID: 17200734]
  5. J Am Chem Soc. 2014 May 28;136(21):7662-8 [PMID: 24784319]
  6. Photochem Photobiol Sci. 2011 Jun;10(6):904-10 [PMID: 21298184]
  7. Comb Chem High Throughput Screen. 2015;18(10):952-9 [PMID: 26377542]
  8. J Environ Radioact. 2014 Jul;133:5-9 [PMID: 23664231]
  9. Photochem Photobiol. 2017 Mar;93(2):536-540 [PMID: 27645453]
  10. Environ Sci Pollut Res Int. 2015 Jan;22(1):155-67 [PMID: 25146119]
  11. J Environ Radioact. 2013 Jun;120:19-25 [PMID: 23410594]
  12. Biochem Biophys Res Commun. 2002 May 31;294(1):116-9 [PMID: 12054749]
  13. J Hazard Mater. 2012 Jul 30;225-226:114-23 [PMID: 22626628]
  14. Biochim Biophys Acta. 2013 Sep;1828(9):2007-14 [PMID: 23702461]
  15. Free Radic Biol Med. 2000 Jul 1;29(1):26-33 [PMID: 10962202]
  16. Chemosphere. 2010 Aug;80(9):965-71 [PMID: 20591469]
  17. Ecotoxicol Environ Saf. 2002 Oct;53(2):221-5 [PMID: 12568457]
  18. Environ Monit Assess. 2013 Jul;185(7):5909-16 [PMID: 23151839]
  19. Environ Toxicol Chem. 2011 May;30(5):1013-7 [PMID: 21309025]
  20. Appl Radiat Isot. 2012 Dec;71 Suppl:66-70 [PMID: 22705051]
  21. J Photochem Photobiol B. 2007 Sep 25;88(2-3):131-6 [PMID: 17716903]
  22. Luminescence. 2016 Sep;31(6):1283-9 [PMID: 26864478]
  23. ISA Trans. 1981;20(1):29-33 [PMID: 7251338]
  24. Biochemistry (Mosc). 2015 Jun;80(6):733-44 [PMID: 26531018]
  25. Electromagn Biol Med. 2015;34(2):160-6 [PMID: 26098530]
  26. J Photochem Photobiol B. 2012 Dec 5;117:164-70 [PMID: 23123596]
  27. Biochim Biophys Acta. 2016 Sep;1860(9):1884-97 [PMID: 27261092]
  28. Science. 2003 Oct 17;302(5644):376-9 [PMID: 14563981]
  29. Anal Bioanal Chem. 2007 Mar;387(6):2009-16 [PMID: 17237922]
  30. J Environ Radioact. 2011 Apr;102(4):407-11 [PMID: 21388726]
  31. Toxicol Appl Pharmacol. 2010 Feb 15;243(1):27-34 [PMID: 19914272]
  32. Methods Mol Biol. 2013;1028:75-100 [PMID: 23740114]
  33. Annu Rev Biochem. 1967;36:727-56 [PMID: 18257736]
  34. Crit Rev Toxicol. 2013 Aug;43(7):580-606 [PMID: 23875765]
  35. J Photochem Photobiol B. 2006 Apr 3;83(1):77-86 [PMID: 16413195]
  36. Environ Monit Assess. 2015 Mar;187(3):89 [PMID: 25663400]
  37. J Environ Radioact. 2016 Jun;157:131-5 [PMID: 27035890]
  38. Biomed Res Int. 2013;2013:751913 [PMID: 24222914]
  39. Photochem Photobiol Sci. 2007 Jan;6(1):67-70 [PMID: 17200739]
  40. J Nucl Med Technol. 2015 Dec;43(4):242-6 [PMID: 26584616]
  41. Int J Epidemiol. 2012 Feb;41(1):24-32 [PMID: 22296988]
  42. Toxicol Sci. 2001 Aug;62(2):330-8 [PMID: 11452146]
  43. Eur Biophys J. 2012 Jun;41(6):535-44 [PMID: 22526464]
  44. Beilstein J Org Chem. 2015 Aug 11;11:1398-411 [PMID: 26425195]
  45. Nitric Oxide. 2004 Sep;11(2):201-7 [PMID: 15491853]
  46. Anal Bioanal Chem. 2011 Apr;400(2):343-51 [PMID: 21336798]
  47. Microb Cell. 2014 Apr 23;1(5):145-149 [PMID: 28357236]

Word Cloud

Created with Highcharts 10.0.0ОНfullerenolsfullerenoldetoxificationactivitysolutionsoxidativeenzyme-basedconcentrationsbacterial20–24Antioxidantorganicinorganic1СОmixtureassaysusedcellularrespectivelyefficiencyenzymaticprocessesoxidizerantioxidanteffectadaptiveresponsemechanismF-60С60О2–4toxicityFullerenolsnanosizedwater-solublepolyhydroxylatedderivativesfullerenesspecificallotropicformcarbonbioactivecompoundsperspectivepharmaceuticalagentsstudiedmodeltoxicantstype-4-benzoquinonepotassiumferricyanideTwopreparationstested:twotypes+СОBacteria-basedbioluminescentevaluatedecreasebiochemicaltoxicitiesAdditionallyassaydirectmonitoringbacteria-basedshowedsimilarpeculiaritiesprocesses:ultralowactive10-1010-10 g/L2monotonicdependenceobserved3effectivehighlydilutedcellsattributedhormesisphenomenonconcernedstimulationlow-doseexposuresSequenceanalysis16SribosomalRNAcarriedrevealmutationsDNAsuggestionmadehydrophobicmembrane-dependentinvolveddetoxifyingCatalytic10 g/LNADH-dependentreactionsdemonstratedsupposedcontributeBacterialenzymes70С70О2–4FMNflavinmononucleotideFullerenolGTgeneralHormesisLuminousmarinebacteriaNADHnicotinamideadeninedinucleotidedisodiumsaltreducedOxTUltralow

Similar Articles

Cited By