Fully Bayesian spectral methods for imaging data.

Brian J Reich, Joseph Guinness, Simon N Vandekar, Russell T Shinohara, Ana-Maria Staicu
Author Information
  1. Brian J Reich: North Carolina State University, Raleigh, North Carolina, U.S.A. ORCID
  2. Joseph Guinness: North Carolina State University, Raleigh, North Carolina, U.S.A.
  3. Simon N Vandekar: University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.
  4. Russell T Shinohara: University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.
  5. Ana-Maria Staicu: North Carolina State University, Raleigh, North Carolina, U.S.A.

Abstract

Medical imaging data with thousands of spatially correlated data points are common in many fields. Methods that account for spatial correlation often require cumbersome matrix evaluations which are prohibitive for data of this size, and thus current work has either used low-rank approximations or analyzed data in blocks. We propose a method that accounts for nonstationarity, functional connectivity of distant regions of interest, and local signals, and can be applied to large multi-subject datasets using spectral methods combined with Markov Chain Monte Carlo sampling. We illustrate using simulated data that properly accounting for spatial dependence improves precision of estimates and yields valid statistical inference. We apply the new approach to study associations between cortical thickness and Alzheimer's disease, and find several regions of the cortex where patients with Alzheimer's disease are thinner on average than healthy controls.

Keywords

References

  1. J Am Stat Assoc. 2012;107(498):568-577 [PMID: 25400305]
  2. Dement Geriatr Cogn Disord. 2006;21(3):175-81 [PMID: 16401889]
  3. Neuroimage. 2014 Apr 1;89:70-80 [PMID: 24269800]
  4. Neurobiol Aging. 2008 Jan;29(1):23-30 [PMID: 17097767]
  5. IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 [PMID: 9617910]
  6. Lancet Neurol. 2014 Jun;13(6):614-29 [PMID: 24849862]
  7. Neurobiol Aging. 2010 Aug;31(8):1304-11 [PMID: 20570398]
  8. Acta Neuropathol. 1991;82(4):239-59 [PMID: 1759558]
  9. Brain Imaging Behav. 2012 Dec;6(4):502-16 [PMID: 22782295]
  10. Brain Imaging Behav. 2012 Dec;6(4):551-67 [PMID: 23070747]
  11. Cereb Cortex. 2005 Jul;15(7):995-1001 [PMID: 15537673]
  12. Neurobiol Aging. 2009 Mar;30(3):432-40 [PMID: 17869384]
  13. Neuroimage. 2014 Jul 15;95:162-75 [PMID: 24650600]
  14. IEEE Trans Med Imaging. 2004 Feb;23(2):213-31 [PMID: 14964566]
  15. Lancet Neurol. 2012 Feb;11(2):170-8 [PMID: 22265212]
  16. J Magn Reson Imaging. 2008 Apr;27(4):685-91 [PMID: 18302232]
  17. J Am Stat Assoc. 2014 Jul;109(507):1084-1098 [PMID: 25435598]
  18. Neurology. 1984 Jul;34(7):939-44 [PMID: 6610841]
  19. J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):59-83 [PMID: 25642138]
  20. Alzheimers Dement. 2005 Jul;1(1):55-66 [PMID: 17476317]
  21. Biostatistics. 2016 Apr;17 (2):291-303 [PMID: 26553916]
  22. Alzheimers Dement. 2007 Jul;3(3):186-91 [PMID: 19595937]
  23. Biometrics. 2018 Jan 22;:null [PMID: 29359375]
  24. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 [PMID: 10984517]
  25. Alzheimers Dement. 2011 Jan;7(1):80-93 [PMID: 21255746]

Grants

  1. T32 MH065218/NIMH NIH HHS
  2. U01 AG024904/NIA NIH HHS
  3. R21 NS093349/NINDS NIH HHS
  4. U19 AG024904/NIA NIH HHS
  5. R01 NS085211/NINDS NIH HHS

MeSH Term

Alzheimer Disease
Bayes Theorem
Case-Control Studies
Cerebral Cortex
Computer Simulation
Data Interpretation, Statistical
Datasets as Topic
Diagnostic Imaging
Humans
Markov Chains
Monte Carlo Method
Spectrum Analysis

Word Cloud

Created with Highcharts 10.0.0dataimagingspatialcorrelationconnectivityregionsusingspectralmethodsMarkovMonteCarloAlzheimer'sdiseaseMedicalthousandsspatiallycorrelatedpointscommonmanyfieldsMethodsaccountoftenrequirecumbersomematrixevaluationsprohibitivesizethuscurrentworkeitherusedlow-rankapproximationsanalyzedblocksproposemethodaccountsnonstationarityfunctionaldistantinterestlocalsignalscanappliedlargemulti-subjectdatasetscombinedChainsamplingillustratesimulatedproperlyaccountingdependenceimprovesprecisionestimatesyieldsvalidstatisticalinferenceapplynewapproachstudyassociationscorticalthicknessfindseveralcortexpatientsthinneraveragehealthycontrolsFullyBayesianFunctionalchainMat��rnShrinkagepriorsSphericalharmonics

Similar Articles

Cited By