Common framework for "virtual lesion" and state-dependent TMS: The facilitatory/suppressive range model of online TMS effects on behavior.

Juha Silvanto, Zaira Cattaneo
Author Information
  1. Juha Silvanto: University of Westminster, Faculty of Science and Technology, Department of Psychology, 115 New Cavendish Street, W1W 6UW London, UK. Electronic address: j.silvanto@westminster.ac.uk.
  2. Zaira Cattaneo: Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; Brain Connectivity Center, National Neurological Institute C. Mondino, 27100 Pavia, Italy.

Abstract

The behavioral effects of Transcranial Magnetic Stimulation (TMS) are often nonlinear; factors such as stimulation intensity and brain state can modulate the impact of TMS on observable behavior in qualitatively different manner. Here we propose a theoretical framework to account for these effects. In this model, there are distinct intensity ranges for facilitatory and suppressive effects of TMS - low intensities facilitate neural activity and behavior whereas high intensities induce suppression. The key feature of the model is that these ranges are shifted by changes in neural excitability: consequently, a TMS intensity, which normally induces suppression, can have a facilitatory effect if the stimulated neurons are being inhibited by ongoing task-related processes or preconditioning. For example, adaptation reduces excitability of adapted neurons; the outcome is that TMS intensities which inhibit non-adapted neurons induce a facilitation on adapted neural representations, leading to reversal of adaptation effects. In conventional "virtual lesion" paradigms, similar effects occur because neurons not involved in task-related processes are inhibited by the ongoing task. The resulting reduction in excitability can turn high intensity "inhibitory" TMS to low intensity "facilitatory" TMS for these neurons, and as task-related neuronal representations are in the inhibitory range, the outcome is a reduction in signal-to-noise ratio and behavioral impairment.

References

  1. Exp Brain Res. 2010 Dec;207(3-4):165-72 [PMID: 20963579]
  2. Phys Rev Lett. 2000 Mar 13;84(11):2310-3 [PMID: 11018872]
  3. Neurosci Biobehav Rev. 2013 Sep;37(8):1702-12 [PMID: 23827785]
  4. J Neurophysiol. 2007 May;97(5):3155-64 [PMID: 17344377]
  5. Neuroimage. 2008 Jan 15;39(2):549-52 [PMID: 17945512]
  6. Clin Neurophysiol. 2011 Oct;122(10):1951-5 [PMID: 21511523]
  7. J Physiol. 2003 Dec 1;553(Pt 2):665-79 [PMID: 12963791]
  8. Brain Struct Funct. 2017 Dec;222(9):4271-4282 [PMID: 28699028]
  9. Neuroreport. 2008 Sep 17;19(14):1423-7 [PMID: 18766024]
  10. Neuron. 2003 Aug 14;39(4):681-91 [PMID: 12925281]
  11. J Neurosci. 2004 Mar 31;24(13):3379-85 [PMID: 15056717]
  12. Adv Cogn Psychol. 2008 Jul 15;3(1-2):177-9 [PMID: 20517507]
  13. J Physiol. 1999 Aug 1;518 ( Pt 3):867-82 [PMID: 10420021]
  14. Trends Cogn Sci. 2015 Jul;19(7):394-405 [PMID: 26051384]
  15. Neuroimage. 2010 Feb 1;49(3):2728-34 [PMID: 19853046]
  16. Cortex. 2013 Oct;49(9):2590-4 [PMID: 23927999]
  17. Cereb Cortex. 2002 Jun;12(6):663-9 [PMID: 12003865]
  18. Neuropsychologia. 2011 Aug;49(10):2929-34 [PMID: 21726570]
  19. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:334-50 [PMID: 10590967]
  20. Neurosci Lett. 2009 Oct 25;462(3):253-6 [PMID: 19616067]
  21. Trends Cogn Sci. 2008 Dec;12(12):447-54 [PMID: 18951833]
  22. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):458-62 [PMID: 2480226]
  23. Cereb Cortex. 2015 Mar;25(3):598-608 [PMID: 24084126]
  24. Psychol Res. 2007 Nov;71(6):659-66 [PMID: 16642347]
  25. Brain Stimul. 2015 Nov-Dec;8(6):1175-82 [PMID: 26169802]
  26. Neurosci Biobehav Rev. 2014 Sep;45:295-304 [PMID: 25010557]
  27. Nat Neurosci. 2006 Nov;9(11):1421-31 [PMID: 17041595]
  28. Eur J Neurosci. 2008 Nov;28(9):1924-9 [PMID: 18973605]
  29. J Neurosci. 2002 Nov 1;22(21):9530-40 [PMID: 12417677]
  30. Cereb Cortex. 2006 Dec;16(12):1766-70 [PMID: 16407478]
  31. Eur J Neurosci. 2007 Mar;25(6):1874-81 [PMID: 17408427]
  32. Trends Neurosci. 2016 Nov;39(11):782-795 [PMID: 27697295]
  33. Suppl Clin Neurophysiol. 2003;56:211-9 [PMID: 14677397]
  34. J Neurophysiol. 2011 Jul;106(1):138-43 [PMID: 21543749]
  35. J Neurosci. 2017 Jul 26;37(30):7231-7239 [PMID: 28642285]
  36. Neurosci Lett. 2011 Feb 25;490(2):145-9 [PMID: 21193017]
  37. Neuropsychologia. 2011 Apr;49(5):992-998 [PMID: 21281653]
  38. Cereb Cortex. 2010 Sep;20(9):2252-8 [PMID: 20051360]
  39. Exp Brain Res. 2005 Jan;160(1):129-40 [PMID: 15368087]
  40. J Neurosci. 2011 Mar 2;31(9):3143-7 [PMID: 21368025]
  41. Neurosci Biobehav Rev. 2011 Jan;35(3):516-36 [PMID: 20599555]
  42. J Neurosci. 2011 Mar 2;31(9):3290-4 [PMID: 21368040]
  43. Curr Biol. 2014 Oct 20;24(20):R1012-22 [PMID: 25442850]
  44. Neuropsychologia. 2002;40(13):2280-7 [PMID: 12417458]
  45. Cereb Cortex. 2010 Sep;20(9):2166-71 [PMID: 20051361]
  46. Behav Neurol. 2006;17(3-4):159-62 [PMID: 17148835]
  47. Neurology. 2000 Apr 11;54(7):1529-31 [PMID: 10751273]

MeSH Term

Adult
Arousal
Behavior
Brain
Brain Mapping
Female
Humans
Male
Models, Neurological
Neural Inhibition
Neurons
Nonlinear Dynamics
Signal-To-Noise Ratio
Transcranial Magnetic Stimulation
User-Computer Interface

Word Cloud

Created with Highcharts 10.0.0TMSeffectsintensityneuronscanbehaviormodelintensitiesneuraltask-relatedbehavioralframeworkrangesfacilitatorylowhighinducesuppressioninhibitedongoingprocessesadaptationexcitabilityadaptedoutcomerepresentations"virtuallesion"reductionrangeTranscranialMagneticStimulationoftennonlinearfactorsstimulationbrainstatemodulateimpactobservablequalitativelydifferentmannerproposetheoreticalaccountdistinctsuppressive-facilitateactivitywhereaskeyfeatureshiftedchangesexcitability:consequentlynormallyinduceseffectstimulatedpreconditioningexamplereducesinhibitnon-adaptedfacilitationleadingreversalconventionalparadigmssimilaroccurinvolvedtaskresultingturn"inhibitory""facilitatory"neuronalinhibitorysignal-to-noiseratioimpairmentCommonstate-dependentTMS:facilitatory/suppressiveonline

Similar Articles

Cited By