Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam.

Adam B Shapiro
Author Information
  1. Adam B Shapiro: Entasis Therapeutics, Waltham, Massachusetts, USA adam.shapiro@entasistx.com. ORCID

Abstract

Sulbactam is one of four β-lactamase inhibitors in current clinical use to counteract drug resistance caused by degradation of β-lactam antibiotics by these bacterial enzymes. As a β-lactam itself, Sulbactam is susceptible to degradation by β-lactamases. I investigated the Michaelis-Menten kinetics of Sulbactam hydrolysis by 14 β-lactamases, representing clinically widespread groups within all four Ambler classes, i.e., CTX-M-15, KPC-2, SHV-5, and TEM-1 for class A; IMP-1, NDM-1, and VIM-1 for class B; ADC-7, AmpC, and P99 for class C; and OXA-10, OXA-23, OXA-24, and OXA-48 for class D. All of the β-lactamases were able to hydrolyze Sulbactam, although they varied widely in their kinetic constants for the reaction, even within each class. I also investigated the inactivation kinetics of the inhibition of these enzymes by Sulbactam. The class A β-lactamases varied widely in their susceptibility to inhibition, the class C and D enzymes were very weakly inhibited, and the class B enzymes were essentially or completely unaffected. In addition, we measured the Sulbactam turnover number, the Sulbactam/enzyme molar ratio required for complete inhibition of each enzyme. Class C enzymes had the lowest turnover numbers, class A enzymes varied widely, and class D enzymes had very high turnover numbers. These results are valuable for understanding which β-lactamases ought to be well inhibited by Sulbactam. Moreover, since Sulbactam has intrinsic antibacterial activity against species pathogens, these results contribute to understanding β-lactamase-mediated Sulbactam resistance in , especially due to the action of the widespread class D enzymes.

Keywords

References

  1. FEMS Microbiol Lett. 1996 Sep 15;143(1):29-33 [PMID: 8807798]
  2. J Antibiot (Tokyo). 1982 Nov;35(11):1594-602 [PMID: 6298169]
  3. Biochemistry. 1981 Jun 23;20(13):3680-7 [PMID: 6268140]
  4. J Biol Chem. 1992 Oct 15;267(29):20600-6 [PMID: 1400382]
  5. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2366-72 [PMID: 26856833]
  6. PLoS One. 2013;8(2):e56926 [PMID: 23437273]
  7. FEBS Lett. 1999 Jan 25;443(2):109-11 [PMID: 9989585]
  8. Diagn Microbiol Infect Dis. 2017 Jun;88(2):177-183 [PMID: 28341098]
  9. Antimicrob Agents Chemother. 2005 Nov;49(11):4760-2 [PMID: 16251324]
  10. Cold Spring Harb Perspect Med. 2016 Aug 01;6(8):null [PMID: 27329032]
  11. Antimicrob Agents Chemother. 2010 Feb;54(2):890-7 [PMID: 20008772]
  12. Antimicrob Agents Chemother. 1983 Jul;24(1):23-30 [PMID: 6312873]
  13. Ann Clin Microbiol Antimicrob. 2013 Dec 09;12:38 [PMID: 24321187]
  14. Antibiotics (Basel). 2014 May 09;3(2):193-215 [PMID: 27025744]
  15. Biochem J. 1993 Apr 1;291 ( Pt 1):151-5 [PMID: 8471035]
  16. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76 [PMID: 19995920]
  17. Biochemistry. 2009 Oct 20;48(41):9912-20 [PMID: 19736945]
  18. FEBS Lett. 2000 Mar 31;470(3):285-92 [PMID: 10745083]
  19. Biochemistry. 1994 May 17;33(19):5728-38 [PMID: 8180199]
  20. J Infect Chemother. 2017 May;23 (5):278-285 [PMID: 28202329]
  21. Antimicrob Agents Chemother. 2005 Jul;49(7):2941-8 [PMID: 15980372]
  22. Antimicrob Agents Chemother. 1997 Nov;41(11):2547-9 [PMID: 9371365]
  23. Nat Microbiol. 2017 Jun 30;2:17104 [PMID: 28665414]
  24. Protein Sci. 2010 Sep;19(9):1714-27 [PMID: 20662006]
  25. Clin Microbiol Rev. 2010 Jan;23(1):160-201 [PMID: 20065329]
  26. Antimicrob Agents Chemother. 2000 Nov;44(11):3003-7 [PMID: 11036013]
  27. Antimicrob Agents Chemother. 2013 Jul;57(7):3012-20 [PMID: 23587957]
  28. Biochim Biophys Acta. 1980 Feb 14;611(2):351-7 [PMID: 6243991]
  29. Biochemistry. 2007 Oct 9;46(40):11361-8 [PMID: 17848099]
  30. Antimicrob Agents Chemother. 2015 Mar;59(3):1680-9 [PMID: 25561334]
  31. Expert Opin Drug Metab Toxicol. 2009 Sep;5(9):1099-112 [PMID: 19621991]
  32. Int J Antimicrob Agents. 2015 Nov;46(5):483-93 [PMID: 26498989]
  33. J Am Chem Soc. 2002 Aug 14;124(32):9422-30 [PMID: 12167037]
  34. Antimicrob Agents Chemother. 2002 Jun;46(6):1921-7 [PMID: 12019109]
  35. Antimicrob Agents Chemother. 2004 May;48(5):1586-92 [PMID: 15105109]
  36. Clin Microbiol Rev. 2014 Apr;27(2):241-63 [PMID: 24696435]
  37. J Antimicrob Chemother. 2005 Jun;55(6):1050-1 [PMID: 15872044]
  38. Antimicrob Agents Chemother. 2013 Aug;57(8):3783-8 [PMID: 23716045]
  39. Diagn Microbiol Infect Dis. 2014 Apr;78(4):429-36 [PMID: 24440509]
  40. Antimicrob Agents Chemother. 2007 Aug;51(8):2988-90 [PMID: 17470648]
  41. Biochim Biophys Acta. 1999 Jun 15;1432(1):125-36 [PMID: 10366735]

MeSH Term

Acinetobacter baumannii
Enterobacter cloacae
Gene Expression
Hydrolysis
Kinetics
Pseudomonas aeruginosa
Species Specificity
Sulbactam
beta-Lactamase Inhibitors
beta-Lactamases

Chemicals

beta-Lactamase Inhibitors
beta-Lactamases
Sulbactam

Word Cloud

Created with Highcharts 10.0.0classsulbactamenzymesβ-lactamasesDturnoverSulbactamkineticsCvariedwidelyinhibitionfourβ-lactamaseresistancedegradationβ-lactaminvestigatedwidespreadwithinBinhibitednumbernumbersresultsunderstandingKineticsoneinhibitorscurrentclinicalusecounteractdrugcausedantibioticsbacterialsusceptibleMichaelis-Mentenhydrolysis14representingclinicallygroupsAmblerclassesieCTX-M-15KPC-2SHV-5TEM-1IMP-1NDM-1VIM-1ADC-7AmpCP99OXA-10OXA-23OXA-24OXA-48ablehydrolyzealthoughkineticconstantsreactionevenalsoinactivationsusceptibilityweaklyessentiallycompletelyunaffectedadditionmeasuredsulbactam/enzymemolarratiorequiredcompleteenzymeClasslowesthighvaluablewellMoreoversinceintrinsicantibacterialactivityspeciespathogenscontributeβ-lactamase-mediatedespeciallydueactionHydrolysisβ-Lactamasesβ-LactamaseInhibition

Similar Articles

Cited By (30)