Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review.

Mo Zhou, Winter Maxwell Thayer, John F P Bridges
Author Information
  1. Mo Zhou: Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Room 690, Baltimore, MD, 21205, USA. mzhou8@jhu.edu. ORCID
  2. Winter Maxwell Thayer: Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Room 690, Baltimore, MD, 21205, USA.
  3. John F P Bridges: Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Room 690, Baltimore, MD, 21205, USA.

Abstract

BACKGROUND: Latent class analysis (LCA) has been increasingly used to explore preference heterogeneity, but the literature has not been systematically explored and hence best practices are not understood.
OBJECTIVE: We sought to document all applications of LCA in the stated-preference literature in health and to inform future studies by identifying current norms in published applications.
METHODS: We conducted a systematic review of the MEDLINE, EMBASE, EconLit, Web of Science, and PsycINFO databases. We included stated-preference studies that used LCA to explore preference heterogeneity in healthcare or public health. Two co-authors independently evaluated titles, abstracts, and full-text articles. Abstracted key outcomes included segmentation methods, preference elicitation methods, number of attributes and levels, sample size, model selection criteria, number of classes reported, and hypotheses tests. Study data quality and validity were assessed with the Purpose, Respondents, Explanation, Findings, and Significance (PREFS) quality checklist.
RESULTS: We identified 2560 titles, 99 of which met the inclusion criteria for the review. Two-thirds of the studies focused on the preferences of patients and the general population. In total, 80% of the studies used discrete choice experiments. Studies used between three and 20 attributes, most commonly four to six. Sample size in LCAs ranged from 47 to 2068, with one-third between 100 and 300. Over 90% of the studies used latent class logit models for segmentation. Bayesian information criterion (BIC), Akaike information criterion (AIC), and log-likelihood (LL) were commonly used for model selection, and class size and interpretability were also considered in some studies. About 80% of studies reported two to three classes. The number of classes reported was not correlated with any study characteristics or study population characteristics (p > 0.05). Only 30% of the studies reported using statistical tests to detect significant variations in preferences between classes. Less than half of the studies reported that individual characteristics were included in the segmentation models, and 30% reported that post-estimation analyses were conducted to examine class characteristics. While a higher percentage of studies discussed clinical implications of the segmentation results, an increasing number of studies proposed policy recommendations based on segmentation results since 2010.
CONCLUSIONS: LCA is increasingly used to study preference heterogeneity in health and support decision-making. However, there is little consensus on best practices as its application in health is relatively new. With an increasing demand to study preference heterogeneity, guidance is needed to improve the quality of applications of segmentation methods in health to support policy development and clinical practice.

References

  1. Health Econ Rev. 2016 Dec;6(1):44 [PMID: 27637834]
  2. J Clin Child Adolesc Psychol. 2011;40(4):546-61 [PMID: 21722027]
  3. J Health Econ. 2014 Dec;38:10-22 [PMID: 25281524]
  4. Pharmacoeconomics. 2016 Dec;34(12 ):1195-1209 [PMID: 27402349]
  5. Addiction. 2012 Aug;107(8):1512-24 [PMID: 22296280]
  6. J Health Econ. 2013 Dec;32(6):1166-79 [PMID: 24144729]
  7. BMJ Open. 2015 Oct 15;5(10):e008919 [PMID: 26474940]
  8. Hum Reprod. 2014 Apr;29(4):712-9 [PMID: 24549214]
  9. J Health Commun. 2014 Apr;19(4):413-40 [PMID: 24266450]
  10. Prev Sci. 2012 Dec;13(6):562-73 [PMID: 22961005]
  11. Plast Reconstr Surg. 2016 Jan;137(1):165-73 [PMID: 26710020]
  12. Transplantation. 2016 May;100(5):1136-48 [PMID: 26457603]
  13. BMC Med Educ. 2016 Apr 12;16:107 [PMID: 27068757]
  14. J Clin Child Adolesc Psychol. 2015;44(4):616-29 [PMID: 24702236]
  15. Patient. 2017 Apr;10 (2):251-262 [PMID: 27798814]
  16. Eur J Health Econ. 2016 Jun;17 (5):611-28 [PMID: 26135707]
  17. Pharmacoeconomics. 2015 Dec;33(12 ):1289-300 [PMID: 26232199]
  18. Neurology. 2016 Mar 15;86(11):1045-52 [PMID: 26888989]
  19. Arthritis Care Res (Hoboken). 2014 Aug;66(8):1186-92 [PMID: 24470354]
  20. Value Health. 2011 Sep-Oct;14(6):937-43 [PMID: 21914516]
  21. Appetite. 2016 Mar 1;98 :115-24 [PMID: 26596704]
  22. Med Decis Making. 2015 Jan;35(1):94-105 [PMID: 25145575]
  23. Health Econ. 2013 May;22(5):554-67 [PMID: 22517664]
  24. J Abnorm Child Psychol. 2009 Nov;37(8):1089-102 [PMID: 19629676]
  25. Med Care. 2013 Sep;51(9):838-45 [PMID: 23872905]
  26. Patient. 2017 Oct;10 (5):553-565 [PMID: 28364387]
  27. Invest Ophthalmol Vis Sci. 2008 May;49(5):1907-15 [PMID: 18436824]
  28. Patient. 2013;6(1):45-59 [PMID: 23371430]
  29. Eur J Health Econ. 2015 Jul;16(6):657-70 [PMID: 25135768]
  30. JAMA Pediatr. 2015 Jan;169(1):39-47 [PMID: 25419676]
  31. Health Econ. 2016 Feb;25(2):212-24 [PMID: 25521533]
  32. Value Health. 2016 Sep - Oct;19(6):767-775 [PMID: 27712704]
  33. Infect Dis Poverty. 2016 Oct 6;5(1):100 [PMID: 27716420]
  34. Accid Anal Prev. 2004 Jul;36(4):513-24 [PMID: 15094403]
  35. Soc Sci Med. 2016 Sep;165:10-18 [PMID: 27485728]
  36. Respir Med. 2014 Jun;108(6):842-51 [PMID: 24780719]
  37. Health Econ. 2011 Aug;20(8):930-44 [PMID: 20799343]
  38. J Abnorm Child Psychol. 2008 Oct;36(7):1123-38 [PMID: 18481167]
  39. Aggress Behav. 2011 Nov-Dec;37(6):521-37 [PMID: 21866555]
  40. J Abnorm Child Psychol. 2013 Aug;41(6):865-77 [PMID: 23435482]
  41. Qual Life Res. 2015 Sep;24(9):2173-82 [PMID: 25715945]
  42. PLoS One. 2015 Jul 21;10(7):e0133304 [PMID: 26197344]
  43. Adv Health Sci Educ Theory Pract. 2006 Aug;11(3):245-66 [PMID: 16832708]
  44. Value Health. 2016 Sep - Oct;19(6):788-794 [PMID: 27712706]
  45. Health Econ. 2015 Mar;24(3):258-69 [PMID: 24254584]
  46. Med Decis Making. 2017 Apr;37(3):298-313 [PMID: 28061040]
  47. J Clin Gastroenterol. 2016 Mar;50(3):252-7 [PMID: 26166145]
  48. Int J Clin Pharm. 2016 Jun;38(3):620-30 [PMID: 26610687]
  49. Circ Cardiovasc Qual Outcomes. 2014 Nov;7(6):912-9 [PMID: 25387782]
  50. Health Econ Policy Law. 2011 Jul;6(3):405-33 [PMID: 21205401]
  51. Soc Sci Med. 2010 Jun;70(12):1957-65 [PMID: 20382460]
  52. Health Policy Plan. 2015 Oct;30(8):1059-66 [PMID: 25500745]
  53. Patient. 2014;7(1):5-21 [PMID: 24327338]
  54. Soc Sci Med. 2015 May;132:1-10 [PMID: 25779694]
  55. BMC Health Serv Res. 2014 Sep 01;14:367 [PMID: 25179422]
  56. Pharmacoeconomics. 2016 Mar;34(3):273-84 [PMID: 26589411]
  57. BMC Health Serv Res. 2014 Aug 28;14 :360 [PMID: 25167926]
  58. Prev Sci. 2013 Apr;14(2):157-68 [PMID: 21318625]
  59. Ann Pharmacother. 2010 Oct;44(10):1554-64 [PMID: 20841513]
  60. Ther Adv Neurol Disord. 2016 Jul;9(4):287-96 [PMID: 27366235]
  61. Euro Surveill. 2016 Jun 2;21(22): [PMID: 27277581]
  62. Ann Rheum Dis. 2017 Jan;76(1):126-132 [PMID: 27190098]
  63. J Card Fail. 2000 Sep;6(3):225-32 [PMID: 10997749]
  64. Prenat Diagn. 2013 May;33(5):449-56 [PMID: 23533095]
  65. PLoS One. 2013;8(3):e58347 [PMID: 23505491]
  66. PLoS One. 2016 Aug 30;11(8):e0160771 [PMID: 27575744]
  67. Med Care. 1998 Aug;36(8 Suppl):AS31-45 [PMID: 9708581]
  68. Patient. 2016 Jun;9(3):241-9 [PMID: 26518200]
  69. Med Decis Making. 2015 Nov;35(8):948-58 [PMID: 26338176]
  70. Rheumatology (Oxford). 2016 Nov;55(11):1959-1968 [PMID: 27477807]
  71. J Health Econ. 2008 Jul;27(4):1078-94 [PMID: 18179837]
  72. Child Obes. 2015 Dec;11(6):696-706 [PMID: 26580274]
  73. Accid Anal Prev. 2011 Nov;43(6):1999-2009 [PMID: 21819828]
  74. Soc Sci Med. 2016 Nov;169:109-118 [PMID: 27716548]
  75. Sex Transm Infect. 2017 Mar;93(2):105-111 [PMID: 27535762]
  76. Soc Sci Med. 2016 May;157:48-59 [PMID: 27060541]
  77. Pharmacoeconomics. 2013 Oct;31(10):877-92 [PMID: 24081453]
  78. Int J Med Inform. 2014 Jul;83(7):517-28 [PMID: 24862891]
  79. Psychiatr Serv. 2016 Feb;67(2):184-91 [PMID: 26369880]
  80. Public Health. 2016 Jun;135:83-90 [PMID: 26996310]
  81. BMC Health Serv Res. 2016 Oct 18;16(1):580 [PMID: 27756292]
  82. Pharmacoeconomics. 2012 Oct 1;30(10):961-76 [PMID: 22823521]
  83. BMC Gastroenterol. 2015 May 02;15:55 [PMID: 25934271]
  84. Eur J Hum Genet. 2016 Mar;24(3):361-6 [PMID: 26036860]
  85. PLoS One. 2014 Aug 19;9(8):e104772 [PMID: 25136919]
  86. J Abnorm Child Psychol. 2009 Oct;37(7):929-43 [PMID: 19455413]
  87. Patient Prefer Adherence. 2016 Jul 26;10:1359-72 [PMID: 27555752]
  88. School Ment Health. 2014;6(1):1-14 [PMID: 24563679]
  89. Br J Cancer. 2013 Feb 19;108(3):533-41 [PMID: 23361056]
  90. J Affect Disord. 2013 Jun;148(2-3):210-9 [PMID: 23290792]
  91. J Health Econ. 2015 Mar;40:109-21 [PMID: 25637711]
  92. Haemophilia. 2016 Jan;22(1):e1-e10 [PMID: 26612493]
  93. Value Health. 2009 Mar-Apr;12 (2):331-9 [PMID: 18647255]
  94. Adv Health Econ Health Serv Res. 2014;24:93-121 [PMID: 25244906]
  95. Value Health. 2014 Jul;17(5):588-96 [PMID: 25128052]
  96. Health Policy. 2015 Apr;119(4):427-36 [PMID: 25456019]
  97. Pharmacoeconomics. 2014 Sep;32(9):883-902 [PMID: 25005924]
  98. Hum Resour Health. 2015 Jun 30;13:53 [PMID: 26122606]
  99. Patient. 2008 Dec 1;1(4):317-30 [PMID: 22272999]
  100. Patient Prefer Adherence. 2015 Jul 02;9:899-911 [PMID: 26170640]
  101. Genet Med. 2012 May;14(5):520-6 [PMID: 22241089]
  102. PLoS One. 2014 Jul 24;9(7):e102505 [PMID: 25057914]

Grants

  1. ME-1303-5946/Patient-Centered Outcomes Research Institute

MeSH Term

Bayes Theorem
Delivery of Health Care
Humans
Latent Class Analysis
Logistic Models
Models, Statistical
Patient Preference
Public Health

Word Cloud

Created with Highcharts 10.0.0studiesusedsegmentationreportedpreferencehealthclassLCAheterogeneitynumberclassesstudycharacteristicsapplicationsincludedmethodssizequalityLatentincreasinglyexploreliteraturebestpracticesstated-preferenceconductedreviewtitlesattributesmodelselectioncriteriatestspreferencespopulation80%threecommonlymodelsinformationcriterion30%clinicalresultsincreasingpolicysupportBACKGROUND:analysissystematicallyexploredhenceunderstoodOBJECTIVE:soughtdocumentinformfutureidentifyingcurrentnormspublishedMETHODS:systematicMEDLINEEMBASEEconLitWebSciencePsycINFOdatabaseshealthcarepublicTwoco-authorsindependentlyevaluatedabstractsfull-textarticlesAbstractedkeyoutcomeselicitationlevelssamplehypothesesStudydatavalidityassessedPurposeRespondentsExplanationFindingsSignificancePREFSchecklistRESULTS:identified256099metinclusionTwo-thirdsfocusedpatientsgeneraltotaldiscretechoiceexperimentsStudies20foursixSampleLCAsranged472068one-third10030090%latentlogitBayesianBICAkaikeAIClog-likelihoodLLinterpretabilityalsoconsideredtwocorrelatedp > 005usingstatisticaldetectsignificantvariationsLesshalfindividualpost-estimationanalysesexaminehigherpercentagediscussedimplicationsproposedrecommendationsbasedsince2010CONCLUSIONS:decision-makingHoweverlittleconsensusapplicationrelativelynewdemandguidanceneededimprovedevelopmentpracticeUsingClassAnalysisModelPreferenceHeterogeneityHealth:SystematicReview

Similar Articles

Cited By (63)