Dicer protein levels elevated by mild hyperthermia promote a pro-survival phenotype.

Anand S Devasthanam, Thomas B Tomasi
Author Information
  1. Anand S Devasthanam: Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
  2. Thomas B Tomasi: Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.

Abstract

Cellular exposure to mild stress (39.5°C - 41.5°C) induces thermotolerance, rendering cells resistant to a subsequent heat shock (>42°C) insult. We found that mild hyperthermia at 39.5°C leads to elevations in dicer, a protein well-known for its role in microRNA processing and for its role in cellular stress responses. However, whether elevated dicer protein levels play a role in sustaining a thermotolerant phenotype has, to our knowledge, not been reported. Here we demonstrate that elevated dicer protein is linked to a thermotolerant phenotype in the cervical carcinoma cell line HeLa and in murine embryonic fibroblasts (MEF), and demonstrate that dicer plays a role in mediating PKR and eIF2α phosphorylation. These findings suggest that dicer's role in thermotolerance may be to relay signals to key ER stress pathway components. Moreover, utilizing a MEF cell line defective in microRNA processing, we suggest that dicer's influence on PKR and eIF2α phosphorylation is likely distinct from its microRNA processing role. ATF4 and CHOP are well characterized stress response factors proximal to eIF2α. Evidence is presented that elevated dicer protein in thermotolerant cells differentially modulates ATF4 and CHOP levels to promote a pro-survival phenotype. This work contributes new information on dicer's role in cellular stress responses by defining a pro-survival phenotype in heat stress resistant cells which is sustained, at least in part, by elevated dicer protein levels. Our results suggest an ancillary role for dicer in the cellular stress pathways activated by mild hyperthermia that is likely distinct from its role in microRNA processing.

Keywords

References

  1. Neurochem Res. 2003 Aug;28(8):1163-73 [PMID: 12834255]
  2. PLoS Biol. 2010 Jul 06;8(7):e1000410 [PMID: 20625543]
  3. Cell Stress Chaperones. 2008 Sep;13(3):313-26 [PMID: 18330721]
  4. Am J Physiol Heart Circ Physiol. 2008 Dec;295(6):H2512-21 [PMID: 18978195]
  5. Exp Ther Med. 2012 Mar;3(3):487-492 [PMID: 22969916]
  6. PLoS One. 2011;6(8):e23740 [PMID: 21876766]
  7. J Biol Chem. 2014 Apr 4;289(14):10201-10 [PMID: 24554719]
  8. Nature. 2000 Jan 6;403(6765):98-103 [PMID: 10638761]
  9. J Cell Physiol. 1992 May;151(2):310-7 [PMID: 1572905]
  10. J Biol Chem. 2012 Oct 19;287(43):36384-92 [PMID: 22948139]
  11. Mol Cell Biol. 2000 Oct;20(19):7192-204 [PMID: 10982836]
  12. Biochem Biophys Res Commun. 2015 Jul 31;463(3):389-94 [PMID: 26032504]
  13. J Biol Chem. 2012 Aug 17;287(34):29003-20 [PMID: 22745131]
  14. Int J Hyperthermia. 1996 Jan-Feb;12(1):125-38 [PMID: 8676000]
  15. Int J Hyperthermia. 2006 May;22(3):191-6 [PMID: 16754338]
  16. Cell Rep. 2014 Nov 20;9(4):1471-81 [PMID: 25457613]
  17. Mol Cell. 2010 Oct 22;40(2):253-66 [PMID: 20965420]
  18. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3687-92 [PMID: 16505370]
  19. J Biol Chem. 2006 Jul 28;281(30):21458-68 [PMID: 16717090]
  20. Nature. 1999 Jan 21;397(6716):271-4 [PMID: 9930704]
  21. PLoS One. 2013 Aug 19;8(8):e73870 [PMID: 23977393]
  22. Cell Death Differ. 2004 Apr;11(4):381-9 [PMID: 14685163]
  23. Science. 2010 Apr 16;328(5976):327-34 [PMID: 20223951]
  24. Mol Cell. 2000 Nov;6(5):1099-108 [PMID: 11106749]
  25. Mol Cell Biol. 2001 Feb;21(4):1249-59 [PMID: 11158311]
  26. Biotechnol Bioeng. 2011 Dec;108(12):2777-93 [PMID: 21809331]
  27. Curr Opin Cell Biol. 2011 Apr;23(2):143-9 [PMID: 21146390]
  28. Cell Rep. 2015 Jan 6;10(1):47-61 [PMID: 25543137]
  29. Mol Vis. 2011;17:2228-40 [PMID: 21897745]
  30. J Biol Chem. 2001 Sep 7;276(36):33869-74 [PMID: 11448953]
  31. Natl Cancer Inst Monogr. 1982 Jun;61:193-201 [PMID: 7177179]
  32. Biochim Biophys Acta. 2015 Jan;1853(1):52-62 [PMID: 25260982]
  33. Cancer Res. 1978 Jul;38(7):1843-51 [PMID: 26462]
  34. Prog Brain Res. 2007;162:373-92 [PMID: 17645928]
  35. Cancer Res. 1986 Feb;46(2):474-82 [PMID: 3510074]
  36. J Exp Biol. 2002 Jan;205(Pt 2):273-8 [PMID: 11821493]
  37. J Biol Chem. 2000 Dec 1;275(48):37993-8 [PMID: 10988289]
  38. Prion. 2013 Nov-Dec;7(6):457-63 [PMID: 24401655]
  39. J Cell Physiol. 2005 Oct;205(1):47-57 [PMID: 15887240]
  40. Int J Hyperthermia. 2014 Nov;30(7):502-12 [PMID: 25354679]
  41. Biochim Biophys Acta. 2013 Dec;1833(12 ):3460-3470 [PMID: 23850759]
  42. Mol Cell Proteomics. 2012 Sep;11(9):710-23 [PMID: 22665516]
  43. Int J Hyperthermia. 2013;29(1):51-61 [PMID: 23311378]
  44. Adv Nutr. 2012 May 01;3(3):307-21 [PMID: 22585904]
  45. Biochem J. 1999 Apr 1;339 ( Pt 1):135-41 [PMID: 10085237]
  46. Int J Hyperthermia. 2005 Dec;21(8):681-7 [PMID: 16338849]
  47. PLoS Biol. 2006 Nov;4(11):e374 [PMID: 17090218]
  48. Nat Commun. 2013;4:2812 [PMID: 24287487]
  49. J Cell Biol. 2004 Oct 11;167(1):27-33 [PMID: 15479734]
  50. Mol Cell Biol. 1996 Mar;16(3):1157-68 [PMID: 8622660]
  51. Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11 [PMID: 16246168]

Word Cloud

Created with Highcharts 10.0.0rolestressdicerproteinelevatedphenotypemildhyperthermiamicroRNAprocessinglevelseIF2α5°Cthermotolerancecellscellularthermotolerantsuggestdicer'spro-survival39resistantheatresponsesdemonstratecelllineMEFPKRphosphorylationERlikelydistinctATF4CHOPpromoteCellularexposure-41inducesrenderingsubsequentshock>42°Cinsultfoundleadselevationswell-knownHoweverwhetherplaysustainingknowledgereportedlinkedcervicalcarcinomaHeLamurineembryonicfibroblastsplaysmediatingfindingsmayrelaysignalskeypathwaycomponentsMoreoverutilizingdefectiveinfluencewellcharacterizedresponsefactorsproximalEvidencepresenteddifferentiallymodulatesworkcontributesnewinformationdefiningsustainedleastpartresultsancillarypathwaysactivatedDicer

Similar Articles

Cited By