Using Twitter for Demographic and Social Science Research: Tools for Data Collection and Processing.

Tyler H McCormick, Hedwig Lee, Nina Cesare, Ali Shojaie, Emma S Spiro
Author Information
  1. Tyler H McCormick: Department of Sociology, University of Washington, Seattle, WA, USA.
  2. Hedwig Lee: Department of Sociology, University of Washington, Seattle, WA, USA.
  3. Nina Cesare: Department of Sociology, University of Washington, Seattle, WA, USA.
  4. Ali Shojaie: Department of Statistics, University of Washington, Seattle, WA, USA.
  5. Emma S Spiro: Department of Sociology, University of Washington, Seattle, WA, USA.

Abstract

Despite recent and growing interest in using Twitter to examine human behavior and attitudes, there is still significant room for growth regarding the ability to leverage Twitter data for social science research. In particular, gleaning demographic information about Twitter users-a key component of much social science research-remains a challenge. This article develops an accurate and reliable data processing approach for social science researchers interested in using Twitter data to examine behaviors and attitudes, as well as the demographic characteristics of the populations expressing or engaging in them. Using information gathered from Twitter users who state an intention to not vote in the 2012 presidential election, we describe and evaluate a method for processing data to retrieve demographic information reported by users that is not encoded as text (e.g., details of images) and evaluate the reliability of these techniques. We end by assessing the challenges of this data collection strategy and discussing how large-scale social media data may benefit demographic researchers.

Keywords

References

  1. Cyberpsychol Behav. 2006 Oct;9(5):584-90 [PMID: 17034326]
  2. J Am Coll Health. 2012;60(5):388-94 [PMID: 22686361]
  3. PLoS Curr. 2013 Jul 02;5: [PMID: 23852273]
  4. Science. 2011 Sep 30;333(6051):1878-81 [PMID: 21960633]
  5. J Pers Soc Psychol. 2008 Aug;95(2):352-68 [PMID: 18665707]
  6. Behav Res Methods. 2011 Sep;43(3):635-42 [PMID: 21701948]
  7. J Dent Res. 2011 Sep;90(9):1047-51 [PMID: 21768306]
  8. Aust N Z J Public Health. 2012 Feb;36(1):30-2 [PMID: 22313703]
  9. Behav Res Methods. 2011 Sep;43(3):800-13 [PMID: 21437749]
  10. Perspect Psychol Sci. 2011 Jan;6(1):3-5 [PMID: 26162106]
  11. Psychol Bull. 2007 Sep;133(5):859-83 [PMID: 17723033]
  12. Science. 2014 Mar 14;343(6176):1203-5 [PMID: 24626916]
  13. Science. 2009 Feb 6;323(5915):721-3 [PMID: 19197046]
  14. Behav Res Methods. 2012 Mar;44(1):1-23 [PMID: 21717266]

Grants

  1. R01 HD054511/NICHD NIH HHS
  2. R01 HD070936/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0TwitterdatasocialdemographicattitudesscienceinformationusingexamineprocessingresearchersUsingusersevaluatecollectionDespiterecentgrowinginteresthumanbehaviorstillsignificantroomgrowthregardingabilityleverageresearchparticulargleaningusers-akeycomponentmuchresearch-remainschallengearticledevelopsaccuratereliableapproachinterestedbehaviorswellcharacteristicspopulationsexpressingengaginggatheredstateintentionvote2012presidentialelectiondescribemethodretrievereportedencodedtextegdetailsimagesreliabilitytechniquesendassessingchallengesstrategydiscussinglarge-scalemediamaybenefitDemographicSocialScienceResearch:ToolsDataCollectionProcessingdemographicspopulation

Similar Articles

Cited By