Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach.

Patricia Rojas Sánchez, Alberto Cobos, Marisa Navaro, José Tomas Ramos, Israel Pagán, África Holguín
Author Information
  1. Patricia Rojas Sánchez: HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP (Madrid Cohort of HIV-1 Infected Children and Adolescents Integrated in the Pediatric Branch of the Spanish National AIDS Network (CoRISPe), Madrid, Spain.
  2. Alberto Cobos: Department of Plant-Microbe Interaction, Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Spain.
  3. Marisa Navaro: Department of Infectious Diseases, Hospital General Universitario Gregorio Marañón-CORISPe, Madrid, Spain.
  4. José Tomas Ramos: Department of Infectious Diseases, Hospital Clínico Universitario and Universidad Complutense-CORISPe, Madrid, Spain.
  5. Israel Pagán: Department of Plant-Microbe Interaction, Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Spain.
  6. África Holguín: HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP (Madrid Cohort of HIV-1 Infected Children and Adolescents Integrated in the Pediatric Branch of the Spanish National AIDS Network (CoRISPe), Madrid, Spain.

Abstract

Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (dN, dS) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for dN and the year of HIV-1 diagnosis for ds. The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients.

Keywords

References

  1. J Med Syst. 2011 Dec;35(6):1503-11 [PMID: 20703767]
  2. PLoS Comput Biol. 2007 Feb 16;3(2):e29 [PMID: 17305421]
  3. Mol Phylogenet Evol. 2012 Feb;62(2):777-92 [PMID: 22138161]
  4. PLoS One. 2009;4(3):e4724 [PMID: 19266092]
  5. Virology. 2004 Dec 5;330(1):116-26 [PMID: 15527839]
  6. J Antimicrob Chemother. 2011 Oct;66(10):2362-71 [PMID: 21810838]
  7. Top Antivir Med. 2014 Jun-Jul;22(3):642-50 [PMID: 25101529]
  8. Pediatr Infect Dis J. 2008 May;27(5):457-9 [PMID: 18382385]
  9. Pediatr Infect Dis J. 1996 Dec;15(12):1087-91 [PMID: 8970217]
  10. J Gen Virol. 2008 Nov;89(Pt 11):2773-82 [PMID: 18931075]
  11. Nat Rev Genet. 2004 Jan;5(1):52-61 [PMID: 14708016]
  12. Virus Evol. 2015 May 26;1(1):vev003 [PMID: 27774277]
  13. Fundam Clin Pharmacol. 2012 Feb;26(1):146-61 [PMID: 22118474]
  14. J Virol. 2013 Sep;87(18):10313-23 [PMID: 23678164]
  15. PLoS One. 2016 Sep 21;11(9):e0163153 [PMID: 27655116]
  16. Science. 1996 Mar 15;271(5255):1582-6 [PMID: 8599114]
  17. Clin Microbiol Infect. 2015 Jun;21(6):605.e1-9 [PMID: 25680310]
  18. Pediatr Infect Dis J. 2012 Nov;31(11):e213-21 [PMID: 22785049]
  19. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  20. AIDS Res Hum Retroviruses. 2010 Feb;26(2):241-4 [PMID: 20156108]
  21. PLoS One. 2013 Apr 17;8(4):e61102 [PMID: 23613794]
  22. Immunol Rev. 2013 Jul;254(1):143-69 [PMID: 23772619]
  23. Health Inf Sci Syst. 2016 May 23;4:4 [PMID: 27217953]
  24. HIV Med. 2017 Mar;18(3):171-180 [PMID: 27625109]
  25. PLoS One. 2016 Dec 1;11(12 ):e0167383 [PMID: 27907076]
  26. AIDS Rev. 2006 Jul-Sep;8(3):125-40 [PMID: 17078483]
  27. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  28. J Antimicrob Chemother. 2014 Aug;69(8):2032-42 [PMID: 24788658]
  29. Retrovirology. 2013 Jan 18;10:8 [PMID: 23331949]
  30. BMC Evol Biol. 2011 May 19;11:131 [PMID: 21595904]
  31. PLoS Pathog. 2014 Mar 20;10(3):e1004010 [PMID: 24651464]
  32. AIDS. 2013 Jun 1;27(9):1513-6 [PMID: 23435292]
  33. J Virol. 2002 Nov;76(22):11273-82 [PMID: 12388687]
  34. PLoS Genet. 2014 Jun 26;10(6):e1004439 [PMID: 24967626]
  35. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12568-73 [PMID: 9770526]
  36. Curr Opin HIV AIDS. 2016 Jul;11(4):417-23 [PMID: 27078619]
  37. Antivir Ther. 2015;20(1):73-6 [PMID: 24699164]
  38. PLoS Comput Biol. 2012;8(6):e1002527 [PMID: 22685388]
  39. PLoS One. 2014 Apr 03;9(4):e93950 [PMID: 24699553]
  40. BMC Infect Dis. 2016 Sep 20;16:497 [PMID: 27646635]
  41. J Infect. 2013 Jan;66(1):57-66 [PMID: 23046968]
  42. J Virol. 2009 Dec;83(24):12917-24 [PMID: 19793809]
  43. J Virol. 2002 Nov;76(21):10745-55 [PMID: 12368317]
  44. ISRN Microbiol. 2013 Jun 17;2013:481314 [PMID: 23844315]
  45. Lancet HIV. 2015 Mar;2(3):e76-7 [PMID: 26424546]
  46. Virology. 2014 Dec;471-473:19-28 [PMID: 25461527]
  47. J Infect Dis. 1998 Jul;178(1):101-8 [PMID: 9652428]
  48. J Virol. 2010 Dec;84(23):12437-44 [PMID: 20861265]
  49. Brief Bioinform. 2006 Mar;7(1):86-112 [PMID: 16761367]
  50. Evolution. 2006 Jun;60(6):1165-76 [PMID: 16892967]
  51. Pediatr Infect Dis J. 2017 Oct 6;:null [PMID: 28991889]
  52. PLoS One. 2012;7(2):e28510 [PMID: 22383946]
  53. Curr Opin HIV AIDS. 2016 Nov;11(6):620-627 [PMID: 27662407]
  54. Infect Genet Evol. 2008 Mar;8(2):110-20 [PMID: 18249158]
  55. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  56. Mol Biol Evol. 2005 May;22(5):1208-22 [PMID: 15703242]

MeSH Term

Biological Evolution
Cohort Studies
Genetic Variation
HIV Infections
HIV-1
Humans
Machine Learning
Spain

Word Cloud

Created with Highcharts 10.0.0HIV-1HIV-1BevolutionDRMfactorspediatricinfectedpatientsyearfixation24timemachinelearninggeneticdiversitystudyrelativeimportanceintrahostBdrugmutationsinfectionpolsequences32ddNantiretroviralsamplingagediagnosisfirstaffectingDeterminingmodulatingpopulationsessentialunderstandviralanalyzesclinicalsubtyperesistancelongitudinalrecovered162partialperpatientperinatallyMadridCohortchildrenadolescentsintervalranging203 yearsappliedclassificationmethodsanalyze28clinical/epidemiological/virologicalpredictnonsynonymoussynonymousdSpresenceSpanish917%diagnosed2000833%therapyexperienced0188 yearsexposurepresentedbest-predictorvariablesevolutionaryparameterstreatmentdsbirthseemedrelevantlargeconsideringfamiliesproteaseinhibitorsPIidentifiesusingImpactClinicalParametersIntrahostEvolutionSubtypePediatricPatients:MachineLearningApproach

Similar Articles

Cited By