Myelin plasticity and behaviour-connecting the dots.

Malte Sebastian Kaller, Alberto Lazari, Cristina Blanco-Duque, Cassandra Sampaio-Baptista, Heidi Johansen-Berg
Author Information
  1. Malte Sebastian Kaller: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom. Electronic address: malte.kaller@pmb.ox.ac.uk.
  2. Alberto Lazari: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom.
  3. Cristina Blanco-Duque: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom.
  4. Cassandra Sampaio-Baptista: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom.
  5. Heidi Johansen-Berg: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom.

Abstract

Myelin sheaths in the vertebrate nervous system enable faster impulse propagation, while myelinating glia provide vital support to axons. Once considered a static insulator, converging evidence now suggests that myelin in the central nervous system can be dynamically regulated by neuronal activity and continues to participate in nervous system plasticity beyond development. While the link between experience and myelination gains increased recognition, it is still unclear what role such adaptive myelination plays in facilitating and shaping behaviour. Additionally, fundamental mechanisms and principles underlying myelin remodelling remain poorly understood. In this review, we will discuss new insights into the link between myelin plasticity and behaviour, as well as mechanistic aspects of myelin remodelling that may help to elucidate this intriguing process.

References

  1. PLoS One. 2011;6(6):e20678 [PMID: 21701690]
  2. J Comp Neurol. 2003 Jul 21;462(2):144-52 [PMID: 12794739]
  3. Neuroimage. 2013 Apr 15;70:1-9 [PMID: 23268785]
  4. Trends Cell Biol. 2016 Feb;26(2):135-147 [PMID: 26442841]
  5. J Neurosci. 1998 Nov 15;18(22):9303-11 [PMID: 9801369]
  6. Neuroimage. 2006 Nov 15;33(3):936-46 [PMID: 16978884]
  7. Neuron. 2008 Nov 26;60(4):555-69 [PMID: 19038214]
  8. Nat Neurosci. 2015 May;18(5):628-30 [PMID: 25849985]
  9. Science. 2014 Oct 17;346(6207):318-22 [PMID: 25324381]
  10. Cell. 2014 Jan 16;156(1-2):277-90 [PMID: 24439382]
  11. Biol Psychiatry. 2014 Feb 1;75(3):248-56 [PMID: 23830668]
  12. Science. 2012 Sep 14;337(6100):1357-60 [PMID: 22984073]
  13. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):E321-8 [PMID: 25561543]
  14. Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17648-53 [PMID: 25422429]
  15. PLoS One. 2009 Nov 13;4(11):e7754 [PMID: 19915661]
  16. J Neurocytol. 2002 Sep-Nov;31(8-9):581-93 [PMID: 14501200]
  17. Nat Neurosci. 2009 Nov;12(11):1370-1 [PMID: 19820707]
  18. Nat Commun. 2015 Aug 25;6:8073 [PMID: 26305015]
  19. Nature. 2012 Apr 29;485(7399):517-21 [PMID: 22622581]
  20. Cell. 2014 Nov 6;159(4):766-74 [PMID: 25417154]
  21. Neuron. 2013 Mar 6;77(5):873-85 [PMID: 23473318]
  22. Trends Neurosci. 2008 Jul;31(7):361-70 [PMID: 18538868]
  23. Nat Neurosci. 2016 Feb;19(2):190-7 [PMID: 26814588]
  24. Elife. 2017 Jan 28;6:null [PMID: 28130923]
  25. Nat Neurosci. 2016 Sep;19(9):1210-1217 [PMID: 27455109]
  26. J Neurosci. 2013 Dec 11;33(50):19499-503 [PMID: 24336716]
  27. J Neurosci. 2016 Jun 29;36(26):6937-48 [PMID: 27358452]
  28. Science. 2014 May 2;344(6183):1252304 [PMID: 24727982]
  29. Neuroimage. 2014 May 15;92:356-68 [PMID: 24384150]
  30. Nat Rev Neurosci. 2015 Dec;16(12 ):756-67 [PMID: 26585800]
  31. Neuroscience. 2014 Sep 12;276:187-205 [PMID: 24280637]
  32. Nature. 2010 Nov 11;468(7321):244-52 [PMID: 21068833]
  33. Neuroscience. 2014 Sep 12;276:2-13 [PMID: 25003711]
  34. Curr Opin Neurobiol. 2012 Feb;22(1):154-61 [PMID: 22119321]
  35. Science. 2014 Apr 18;344(6181):319-24 [PMID: 24744380]
  36. Magn Reson Med. 2015 Jan;73(1):70-81 [PMID: 24604728]
  37. Neuroimage. 2012 Oct 15;63(1):533-9 [PMID: 22776448]
  38. Neuropharmacology. 2016 Nov;110(Pt B):563-573 [PMID: 26282119]
  39. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3765-74 [PMID: 26100897]
  40. Neural Plast. 2016;2016:7526135 [PMID: 27293906]
  41. J Neurosci. 2016 Aug 31;36(35):9186-200 [PMID: 27581459]
  42. Science. 2016 Jun 10;352(6291):1326-1329 [PMID: 27284195]
  43. Bioessays. 2015 Jan;37(1):60-9 [PMID: 25363888]
  44. Cereb Cortex. 2006 Apr;16(4):553-60 [PMID: 16033925]
  45. Neuroscience. 2014 Sep 12;276:135-47 [PMID: 24291730]
  46. Cereb Cortex. 2015 Jun;25(6):1587-95 [PMID: 24414278]
  47. Neuroimage. 2014 Jun;93 Pt 1:95-106 [PMID: 24607447]
  48. Nat Commun. 2016 Dec 15;7:13629 [PMID: 27976682]
  49. Nat Neurosci. 2012 Dec;15(12):1621-3 [PMID: 23143512]
  50. Curr Biol. 2015 Sep 21;25(18):2411-6 [PMID: 26320951]
  51. Glia. 2016 Dec;64(12 ):2201-2218 [PMID: 27615452]
  52. Curr Biol. 2016 Jun 6;26(11):1447-55 [PMID: 27161502]
  53. J Neurosci. 2016 Apr 6;36(14):4056-66 [PMID: 27053212]
  54. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9887-92 [PMID: 8790426]
  55. J Neurosci. 2010 Jun 30;30(26):8953-64 [PMID: 20592216]
  56. J Neurosci. 2013 Jul 31;33(31):12844-50 [PMID: 23904619]
  57. J Cogn Neurosci. 2004 Sep;16(7):1227-33 [PMID: 15453975]
  58. J Neurosci. 2010 Sep 1;30(35):11670-7 [PMID: 20810887]
  59. Cell. 2015 Jul 30;162(3):648-61 [PMID: 26232230]
  60. Physiol Rev. 2006 Jul;86(3):1033-48 [PMID: 16816145]
  61. Dev Cell. 2013 Jun 24;25(6):599-609 [PMID: 23806617]
  62. Nat Neurosci. 2015 May;18(5):683-9 [PMID: 25849987]

Grants

  1. 102393/Z/13/Z/Wellcome Trust
  2. 109062/Z/15/Z/Wellcome Trust
  3. 109059/Z/15/Z/Wellcome Trust
  4. 110027/Z/15/Z/Wellcome Trust

MeSH Term

Animals
Brain
Humans
Learning
Myelin Sheath
Neuronal Plasticity
White Matter

Word Cloud

Created with Highcharts 10.0.0myelinnervoussystemplasticityMyelinlinkmyelinationbehaviourremodellingsheathsvertebrateenablefasterimpulsepropagationmyelinatinggliaprovidevitalsupportaxonsconsideredstaticinsulatorconvergingevidencenowsuggestscentralcandynamicallyregulatedneuronalactivitycontinuesparticipatebeyonddevelopmentexperiencegainsincreasedrecognitionstillunclearroleadaptiveplaysfacilitatingshapingAdditionallyfundamentalmechanismsprinciplesunderlyingremainpoorlyunderstoodreviewwilldiscussnewinsightswellmechanisticaspectsmayhelpelucidateintriguingprocessbehaviour-connectingdots

Similar Articles

Cited By