Self-association of a highly charged arginine-rich cell-penetrating peptide.

Giulio Tesei, Mario Vazdar, Malene Ringkjøbing Jensen, Carolina Cragnell, Phil E Mason, Jan Heyda, Marie Skepö, Pavel Jungwirth, Mikael Lund
Author Information
  1. Giulio Tesei: Department of Chemistry, Division of Theoretical Chemistry, Lund University, SE-22100 Lund, Sweden; Mikael.Lund@teokem.lu.se giulio.tesei@teokem.lu.se pavel.jungwirth@uochb.cas.cz.
  2. Mario Vazdar: Division of Organic Chemistry and Biochemistry, Rudjer Bos̆ković Institute, HR-10002 Zagreb, Croatia.
  3. Malene Ringkjøbing Jensen: Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
  4. Carolina Cragnell: Department of Chemistry, Division of Theoretical Chemistry, Lund University, SE-22100 Lund, Sweden. ORCID
  5. Phil E Mason: Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic.
  6. Jan Heyda: Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 16628 Prague 6, Czech Republic.
  7. Marie Skepö: Department of Chemistry, Division of Theoretical Chemistry, Lund University, SE-22100 Lund, Sweden.
  8. Pavel Jungwirth: Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic; Mikael.Lund@teokem.lu.se giulio.tesei@teokem.lu.se pavel.jungwirth@uochb.cas.cz.
  9. Mikael Lund: Department of Chemistry, Division of Theoretical Chemistry, Lund University, SE-22100 Lund, Sweden; Mikael.Lund@teokem.lu.se giulio.tesei@teokem.lu.se pavel.jungwirth@uochb.cas.cz.

Abstract

Small-angle X-ray scattering (SAXS) measurements reveal a striking difference in intermolecular interactions between two short highly charged peptides-deca-arginine (R10) and deca-lysine (K10). Comparison of SAXS curves at high and low salt concentration shows that R10 self-associates, while interactions between K10 chains are purely repulsive. The self-association of R10 is stronger at lower ionic strengths, indicating that the attraction between R10 molecules has an important electrostatic component. SAXS data are complemented by NMR measurements and potentials of mean force between the peptides, calculated by means of umbrella-sampling molecular dynamics (MD) simulations. All-atom MD simulations elucidate the origin of the R10-R10 attraction by providing structural information on the dimeric state. The last two C-terminal residues of R10 constitute an adhesive patch formed by stacking of the side chains of two arginine residues and by salt bridges formed between the like-charge ion pair and the C-terminal carboxyl groups. A statistical analysis of the Protein Data Bank reveals that this mode of interaction is a common feature in proteins.

Keywords

References

  1. Mol Pharm. 2014 Jul 7;11(7):2475-89 [PMID: 24892385]
  2. J Pept Sci. 2008 Apr;14(4):469-76 [PMID: 18069724]
  3. Curr Protoc Protein Sci. 2012 Nov;Chapter 17:Unit17.14 [PMID: 23151743]
  4. Biochemistry. 1997 Aug 19;36(33):10276-85 [PMID: 9254626]
  5. Mol Microbiol. 2012 Nov;86(3):730-42 [PMID: 22970759]
  6. Phys Chem Chem Phys. 2014 Oct 14;16(38):20785-95 [PMID: 25166723]
  7. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  8. Biochim Biophys Acta. 2009 Sep;1788(9):1916-23 [PMID: 19505433]
  9. J Phys Chem B. 2016 Jan 14;120(1):143-53 [PMID: 26673566]
  10. Protein Sci. 2007 Sep;16(9):1867-77 [PMID: 17766383]
  11. J Agric Food Chem. 2007 Jul 11;55(14 ):5445-51 [PMID: 17539659]
  12. J Phys Chem A. 2011 Oct 20;115(41):11193-201 [PMID: 21721561]
  13. Bioinformatics. 2013 Apr 1;29(7):845-54 [PMID: 23407358]
  14. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4557-61 [PMID: 12684536]
  15. Cytoskeleton (Hoboken). 2017 Dec;74(12 ):504-511 [PMID: 28768064]
  16. J Chem Theory Comput. 2013 Jan 8;9(1):461-469 [PMID: 23316124]
  17. J Phys Chem B. 2013 Oct 10;117(40):12145-56 [PMID: 24024591]
  18. Nat Chem Biol. 2017 Apr;13(4):366-368 [PMID: 28166207]
  19. Sci Rep. 2015 Nov 16;5:16914 [PMID: 26567719]
  20. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  21. Biophys J. 2015 Oct 20;109 (8):1528-32 [PMID: 26488642]
  22. Protein Sci. 2010 Apr;19(4):642-57 [PMID: 20120026]
  23. J Chem Theory Comput. 2015 Jul 14;11(7):3420-31 [PMID: 26575776]
  24. J Phys Chem B. 2014 Jun 19;118(24):6561-9 [PMID: 24702709]
  25. J Phys Chem B. 2015 Jan 15;119(2):503-8 [PMID: 25494398]
  26. Sci Rep. 2016 Feb 22;6:21759 [PMID: 26899474]
  27. J Am Chem Soc. 2006 Jul 26;128(29):9506-17 [PMID: 16848488]
  28. J Pept Res. 2000 Nov;56(5):318-25 [PMID: 11095185]
  29. Science. 2004 May 14;304(5673):995-9 [PMID: 15060287]
  30. Biophys J. 2007 Jul 1;93(1):L04-6 [PMID: 17449674]
  31. J Chem Phys. 2013 Jul 21;139(3):035104 [PMID: 23883058]
  32. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20461-6 [PMID: 23184996]
  33. Bioinformatics. 2003 Aug 12;19(12 ):1589-91 [PMID: 12912846]
  34. J Am Chem Soc. 2004 Sep 22;126(37):11462-70 [PMID: 15366892]
  35. J Synchrotron Radiat. 2013 Jul;20(Pt 4):660-4 [PMID: 23765312]
  36. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  37. Electrophoresis. 2012 Mar;33(6):981-9 [PMID: 22528417]
  38. J Comput Chem. 2011 Jul 15;32(9):1919-28 [PMID: 21469160]
  39. J Phys Chem B. 2014 Nov 6;118(44):12599-611 [PMID: 25302767]
  40. J Chem Theory Comput. 2014 Nov 11;10(11):5113-5124 [PMID: 25400522]
  41. J Phys Chem B. 2016 Sep 8;120(35):9287-96 [PMID: 27571288]
  42. J Phys Chem B. 2007 Apr 26;111(16):4137-40 [PMID: 17407342]
  43. J Chem Theory Comput. 2008 Jan;4(1):116-22 [PMID: 26619985]
  44. J Phys Chem B. 2013 Oct 3;117(39):11530-40 [PMID: 24020922]
  45. J Phys Chem B. 2013 Oct 10;117(40):11906-20 [PMID: 24007457]
  46. Nat Commun. 2011 Aug 30;2:453 [PMID: 21878907]
  47. J Phys Chem B. 2016 Sep 1;120(34):8953-9 [PMID: 27447055]
  48. J Biol Chem. 2001 Feb 23;276(8):5836-40 [PMID: 11084031]

MeSH Term

Amino Acid Sequence
Arginine
Computer Simulation
Magnetic Resonance Spectroscopy
Models, Chemical
Osmolar Concentration
Peptides
Protein Binding
Scattering, Small Angle
Static Electricity
X-Ray Diffraction

Chemicals

Peptides
Arginine

Word Cloud

Created with Highcharts 10.0.0R10SAXStwoMDsimulationsmeasurementsinteractionshighlychargedK10saltchainsself-associationattractionNMRC-terminalresiduesformedcell-penetratingpeptideSmall-angleX-rayscatteringrevealstrikingdifferenceintermolecularshortpeptides-deca-argininedeca-lysineComparisoncurveshighlowconcentrationshowsself-associatespurelyrepulsivestrongerlowerionicstrengthsindicatingmoleculesimportantelectrostaticcomponentdatacomplementedpotentialsmeanforcepeptidescalculatedmeansumbrella-samplingmoleculardynamicsAll-atomelucidateoriginR10-R10providingstructuralinformationdimericstatelastconstituteadhesivepatchstackingsideargininebridgeslike-chargeionpaircarboxylgroupsstatisticalanalysisProteinDataBankrevealsmodeinteractioncommonfeatureproteinsSelf-associationarginine-rich

Similar Articles

Cited By