A Rescorla-Wagner drift-diffusion model of conditioning and timing.

André Luzardo, Eduardo Alonso, Esther Mondragón
Author Information
  1. André Luzardo: Department of Computer Science, City University of London, London, United Kingdom. ORCID
  2. Eduardo Alonso: Department of Computer Science, City University of London, London, United Kingdom.
  3. Esther Mondragón: Department of Computer Science, City University of London, London, United Kingdom. ORCID

Abstract

Computational models of classical conditioning have made significant contributions to the theoretic understanding of associative learning, yet they still struggle when the temporal aspects of conditioning are taken into account. Interval timing models have contributed a rich variety of time representations and provided accurate predictions for the timing of responses, but they usually have little to say about associative learning. In this article we present a unified model of conditioning and timing that is based on the influential Rescorla-Wagner conditioning model and the more recently developed Timing Drift-Diffusion model. We test the model by simulating 10 experimental phenomena and show that it can provide an adequate account for 8, and a partial account for the other 2. We argue that the model can account for more phenomena in the chosen set than these other similar in scope models: CSC-TD, MS-TD, Learning to Time and Modular Theory. A comparison and analysis of the mechanisms in these models is provided, with a focus on the types of time representation and associative learning rule used.

References

  1. J Exp Anal Behav. 1999 Mar;71(2):215-51 [PMID: 10220931]
  2. J Exp Psychol Anim Behav Process. 1983 Jul;9(3):307-19 [PMID: 6886633]
  3. Psychon Bull Rev. 2007 Aug;14(4):543-59 [PMID: 17972717]
  4. J Exp Psychol Anim Behav Process. 2013 Jul;39(3):233-48 [PMID: 23627799]
  5. Behav Processes. 1999 Apr;45(1-3):33-57 [PMID: 24897526]
  6. J Exp Psychol Anim Behav Process. 2011 Jan;37(1):94-107 [PMID: 20718546]
  7. Curr Opin Neurobiol. 1997 Apr;7(2):170-84 [PMID: 9142762]
  8. Behav Processes. 2003 Apr 28;62(1-3):27-48 [PMID: 12729967]
  9. Psychol Rev. 1980 Nov;87(6):532-52 [PMID: 7443916]
  10. Behav Processes. 2009 Jan;80(1):67-75 [PMID: 18950695]
  11. Curr Biol. 2015 Oct 19;25(20):2599-609 [PMID: 26455307]
  12. Nature. 2001 Aug 2;412(6846):546-9 [PMID: 11484055]
  13. Q J Exp Psychol B. 1982 Feb;34 (Pt 1):19-30 [PMID: 6890222]
  14. Biol Cybern. 1988;58(6):405-15 [PMID: 3395634]
  15. J Exp Psychol Anim Behav Process. 1984 Jan;10(1):1-29 [PMID: 6707581]
  16. Behav Processes. 1998 Dec;44(2):147-62 [PMID: 24896972]
  17. Science. 2016 Dec 2;354(6316):1108-1109 [PMID: 27934726]
  18. Anim Cogn. 2016 Mar;19(2):329-42 [PMID: 26520647]
  19. Ann N Y Acad Sci. 1984;423:52-77 [PMID: 6588812]
  20. Cereb Cortex. 2003 Nov;13(11):1196-207 [PMID: 14576211]
  21. Psychol Rev. 2007 Jul;114(3):759-83 [PMID: 17638505]
  22. Behav Processes. 2013 May;95:31-9 [PMID: 23454594]
  23. Behav Processes. 2002 Apr 28;57(2-3):89-106 [PMID: 11947991]
  24. J Exp Psychol Anim Learn Cogn. 2016 Apr;42(2):187-99 [PMID: 26881898]
  25. Psychol Bull. 1995 May;117(3):363-86 [PMID: 7777644]
  26. J Exp Psychol Anim Learn Cogn. 2017 Jan;43(1):1-14 [PMID: 28045291]
  27. J Exp Psychol Anim Behav Process. 1993 Oct;19(4):327-41 [PMID: 8228832]
  28. Neuron. 2003 Apr 24;38(2):317-27 [PMID: 12718864]
  29. Psychol Rev. 2015 Jan;122(1):24-53 [PMID: 25330329]
  30. Brain Res Cogn Brain Res. 2004 Oct;21(2):139-70 [PMID: 15464348]
  31. J Exp Psychol Anim Behav Process. 1998 Jan;24(1):15-33 [PMID: 9438963]
  32. J Exp Anal Behav. 1968 May;11(3):Suppl:327-83 [PMID: 5672248]
  33. J Exp Psychol Anim Behav Process. 2004 Jul;30(3):163-76 [PMID: 15279508]
  34. Nat Rev Neurosci. 2013 Mar;14(3):217-23 [PMID: 23403747]
  35. J Exp Psychol Anim Behav Process. 1999 Oct;25(4):433-50 [PMID: 17763570]
  36. Behav Processes. 2007 Feb 22;74(2):274-85 [PMID: 17194549]
  37. Psychol Rev. 2006 Jul;113(3):584-605 [PMID: 16802882]
  38. J Comp Physiol Psychol. 1968 Dec;66(3):679-87 [PMID: 5721496]
  39. Learn Behav. 2008 May;36(2):92-103 [PMID: 18543710]
  40. Annu Rev Psychol. 2013;64:169-200 [PMID: 22804775]
  41. J Neurosci. 2011 Jun 22;31(25):9238-53 [PMID: 21697374]
  42. Int J Comp Psychol. 2015;28: [PMID: 26843782]
  43. J Comp Physiol Psychol. 1959 Aug;52:415-9 [PMID: 14418647]
  44. Cognition. 1990 Nov;37(1-2):23-54 [PMID: 2269007]
  45. Bioessays. 2000 Jan;22(1):94-103 [PMID: 10649295]
  46. J Exp Anal Behav. 1969 Sep;12(5):677-87 [PMID: 16811392]
  47. Annu Rev Psychol. 2001;52:111-39 [PMID: 11148301]
  48. J Exp Psychol Anim Behav Process. 2006 Jul;32(3):284-94 [PMID: 16834495]
  49. J Exp Psychol Anim Behav Process. 2005 Jan;31(1):31-9 [PMID: 15656725]
  50. Acta Psychol (Amst). 2014 Mar;147:80-91 [PMID: 23896560]
  51. Anim Cogn. 2003 Jun;6(2):113-20 [PMID: 12720110]
  52. Behav Processes. 2014 Jan;101:135-45 [PMID: 23962670]
  53. Exp Psychol. 2013;60(6):385-402 [PMID: 23895923]
  54. J Exp Psychol Anim Behav Process. 2008 Apr;34(2):237-46 [PMID: 18426306]
  55. Behav Processes. 2006 Feb 28;71(2-3):318-29 [PMID: 16378697]
  56. J Exp Psychol Anim Behav Process. 2009 Jul;35(3):434-9 [PMID: 19594288]
  57. Psychol Rev. 1997 Apr;104(2):241-65 [PMID: 9127582]
  58. Learn Behav. 2010 Feb;38(1):1-26 [PMID: 20065345]
  59. J Exp Psychol Anim Behav Process. 1995 Jan;21(1):3-19 [PMID: 7844504]
  60. Behav Processes. 2003 Apr 28;62(1-3):5-25 [PMID: 12729966]
  61. Learn Behav. 2006 Aug;34(3):269-84 [PMID: 17089595]
  62. Psychol Rev. 1981 Mar;88(2):135-70 [PMID: 7291377]
  63. Ann Neurosci. 2010 Jul;17(3):136-41 [PMID: 25205891]
  64. Am Psychol. 1988 Mar;43(3):151-60 [PMID: 3364852]
  65. Psychopharmacology (Berl). 2006 Oct;188(2):201-12 [PMID: 16937099]
  66. Psychol Rev. 1988 Apr;95(2):274-95 [PMID: 3375401]
  67. Annu Rev Psychol. 2014;65:743-71 [PMID: 24050187]
  68. Curr Opin Neurobiol. 2008 Apr;18(2):185-96 [PMID: 18708140]
  69. J Exp Psychol Anim Behav Process. 2003 Oct;29(4):277-91 [PMID: 14570516]
  70. Behav Processes. 2008 Jan;77(1):33-42 [PMID: 17628349]
  71. Anim Learn Behav. 2002 Aug;30(3):177-200 [PMID: 12391785]
  72. Behav Processes. 2013 May;95:90-9 [PMID: 23428705]
  73. J Exp Anal Behav. 2009 Nov;92(3):423-58 [PMID: 20514171]
  74. Psychol Rev. 2000 Apr;107(2):289-344 [PMID: 10789198]
  75. Behav Processes. 2014 Jan;101:49-57 [PMID: 24012783]
  76. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  77. Neural Comput. 2008 Dec;20(12):3034-54 [PMID: 18624657]
  78. Neural Comput. 2012 Jan;24(1):134-93 [PMID: 21919782]
  79. J Exp Psychol Anim Behav Process. 2007 Oct;33(4):464-75 [PMID: 17924793]
  80. Learn Behav. 2012 Sep;40(3):231-40 [PMID: 22926998]
  81. Q J Exp Psychol B. 2002 Jan;55(1):61-73 [PMID: 11900307]
  82. J Neurosci. 2001 Jan 15;21(2):682-90 [PMID: 11160447]
  83. Learn Behav. 2012 Sep;40(3):305-19 [PMID: 22927003]
  84. PLoS One. 2014 Jul 23;9(7):e102469 [PMID: 25054799]

MeSH Term

Association Learning
Computational Biology
Computer Simulation
Conditioning, Classical
Humans
Models, Theoretical

Word Cloud

Created with Highcharts 10.0.0modelconditioningaccounttimingmodelsassociativelearningtimeprovidedRescorla-WagnerphenomenacanComputationalclassicalmadesignificantcontributionstheoreticunderstandingyetstillstruggletemporalaspectstakenIntervalcontributedrichvarietyrepresentationsaccuratepredictionsresponsesusuallylittlesayarticlepresentunifiedbasedinfluentialrecentlydevelopedTimingDrift-Diffusiontestsimulating10experimentalshowprovideadequate8partial2arguechosensetsimilarscopemodels:CSC-TDMS-TDLearningTimeModularTheorycomparisonanalysismechanismsfocustypesrepresentationruleuseddrift-diffusion

Similar Articles

Cited By