What makes ribosomes tick?

Sarah Catherine Mills, Ramya Enganti, Albrecht G von Arnim
Author Information
  1. Sarah Catherine Mills: a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA.
  2. Ramya Enganti: a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA.
  3. Albrecht G von Arnim: a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA. ORCID

Abstract

In most organisms, gene expression over the course of the day is under the control of the circadian clock. The canonical clock operates as a gene expression circuit that is controlled at the level of transcription, and transcriptional control is also a major clock output. However, rhythmic transcription cannot explain all the observed rhythms in protein accumulation. Although it is clear that rhythmic gene expression also involves RNA processing and protein turnover, until two years ago little was known in any eukaryote about diel dynamics of mRNA translation into protein. A recent series of studies in animals and plants demonstrated that diel cycles of translation efficiency are widespread across the tree of life and its transcriptomes. There are surprising parallels between the patterns of diel translation in mammals and plants. For example, ribosomal proteins and mitochondrial proteins are under translational control in mouse liver, human tissue culture, and Arabidopsis seedlings. In contrast, the way in which the circadian clock, light-dark changes, and other environmental factors such as nutritional signals interact to drive the cycles of translation may differ between organisms. Further investigation is needed to identify the signaling pathways, biochemical mechanisms, RNA sequence features, and the physiological implications of diel translation.

Keywords

References

  1. Front Plant Sci. 2016 Jul 12;7:1007 [PMID: 27462335]
  2. J Exp Bot. 2014 Jun;65(11):2883-93 [PMID: 24307718]
  3. Cancer Res. 2014 Jan 1;74(1):201-11 [PMID: 24247720]
  4. Dev Biol. 2017 Nov 15;431(2):111-123 [PMID: 28899666]
  5. Annu Rev Plant Biol. 2016 Apr 29;67:261-85 [PMID: 26905651]
  6. Proc Natl Acad Sci U S A. 1969 Oct;64(2):677-82 [PMID: 4391022]
  7. Nat Rev Genet. 2017 Mar;18(3):164-179 [PMID: 27990019]
  8. Genes Dev. 2010 Aug 15;24(16):1787-801 [PMID: 20713520]
  9. PLoS Biol. 2015 Nov 12;13(11):e1002293 [PMID: 26562092]
  10. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6579-88 [PMID: 26554015]
  11. Cell. 2017 May 4;169(4):651-663.e14 [PMID: 28475894]
  12. PLoS Biol. 2013;11(1):e1001455 [PMID: 23300384]
  13. Nature. 2013 Oct 31;502(7473):689-92 [PMID: 24153186]
  14. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1673-82 [PMID: 26862173]
  15. Front Plant Sci. 2015 Jun 12;6:437 [PMID: 26124767]
  16. Genome Biol. 2012 Jun 21;13(6):R54 [PMID: 22721557]
  17. Mol Cell Proteomics. 2015 Aug;14(8):2243-60 [PMID: 26091701]
  18. Nucleic Acids Res. 2011 Nov 1;39(20):8901-14 [PMID: 21785138]
  19. Genes Dev. 2012 Dec 15;26(24):2724-36 [PMID: 23249735]
  20. Aging (Albany NY). 2014 Aug;6(8):675-89 [PMID: 25239872]
  21. Annu Rev Plant Biol. 2016 Apr 29;67:595-618 [PMID: 26653934]
  22. Methods Mol Biol. 2014;1158:157-74 [PMID: 24792050]
  23. Arabidopsis Book. 2013 Jul 18;11:e0165 [PMID: 23908601]
  24. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5104-9 [PMID: 21383174]
  25. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6899-902 [PMID: 16593618]
  26. Plant Cell. 2017 Feb;29(2):207-228 [PMID: 28138016]
  27. Cell Metab. 2017 Jan 10;25(1):102-117 [PMID: 27818260]
  28. PLoS Genet. 2014 Sep 11;10(9):e1004536 [PMID: 25211129]
  29. PLoS One. 2016 Jul 08;11(7):e0159018 [PMID: 27392095]
  30. Open Biol. 2017 Mar;7(3):null [PMID: 28250106]
  31. Crit Rev Biochem Mol Biol. 2017 Apr;52(2):176-184 [PMID: 28152618]
  32. Cell. 2014 Mar 27;157(1):151-61 [PMID: 24679533]
  33. Cold Spring Harb Symp Quant Biol. 2007;72:353-63 [PMID: 18419293]
  34. BMC Biol. 2014 Dec 20;12 :107 [PMID: 25526979]
  35. Plant Physiol. 2013 Jul;162(3):1246-65 [PMID: 23674104]
  36. Front Plant Sci. 2015 May 05;6:311 [PMID: 25999975]
  37. Pflugers Arch. 2016 Jun;468(6):983-91 [PMID: 27108448]
  38. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9605-10 [PMID: 27506798]
  39. Curr Opin Insect Sci. 2015 Feb 1;7:51-57 [PMID: 26120561]
  40. Science. 2005 Apr 15;308(5720):414-5 [PMID: 15831759]
  41. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):167-72 [PMID: 24344304]
  42. F1000Res. 2017 Jun 21;6:951 [PMID: 28690840]
  43. Curr Biol. 2006 Jun 6;16(11):1107-15 [PMID: 16753565]
  44. New Phytol. 2017 Jul;215(1):217-228 [PMID: 28440582]
  45. Genome Res. 2015 Dec;25(12):1836-47 [PMID: 26338483]
  46. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  47. Science. 2016 Jun 17;352(6292):1413-6 [PMID: 27313038]
  48. PLoS One. 2011;6(12):e29307 [PMID: 22195043]
  49. Mol Syst Biol. 2012 Jan 17;8:566 [PMID: 22252389]
  50. Cold Spring Harb Symp Quant Biol. 2007;72:141-4 [PMID: 18419271]
  51. Cell. 2013 Dec 19;155(7):1464-78 [PMID: 24360271]
  52. J Exp Biol. 1982 Apr;97:121-36 [PMID: 7201003]
  53. Science. 1977 Oct 7;198(4312):69-71 [PMID: 897685]
  54. PLoS One. 2013 Jul 24;8(7):e70692 [PMID: 23894680]
  55. Front Plant Sci. 2012 Apr 05;3:66 [PMID: 22645595]
  56. Front Plant Sci. 2017 Apr 26;8:644 [PMID: 28491073]
  57. Adv Exp Med Biol. 2016;907:107-22 [PMID: 27256384]
  58. Genome Biol. 2017 Jun 16;18(1):116 [PMID: 28622766]
  59. Genome Res. 2017 Jun;27(6):973-984 [PMID: 28341772]
  60. EMBO J. 2003 Feb 17;22(4):935-44 [PMID: 12574129]
  61. Curr Opin Plant Biol. 2015 Apr;24:125-35 [PMID: 25835141]
  62. Cell Rep. 2014 Oct 23;9(2):741-51 [PMID: 25373909]
  63. Nat Commun. 2016 Aug 31;7:12696 [PMID: 27576939]
  64. Plant Cell Environ. 2017 Nov;40(11):2571-2585 [PMID: 28732105]
  65. Mol Syst Biol. 2009;5:314 [PMID: 19888209]
  66. Plant Cell. 2015 Sep;27(9):2582-99 [PMID: 26392078]
  67. Mol Syst Biol. 2012;8:606 [PMID: 22929616]
  68. Aging (Albany NY). 2014 Jan;6(1):48-57 [PMID: 24481314]
  69. Nat Struct Mol Biol. 2016 Dec;23 (12 ):1061-1069 [PMID: 27922614]
  70. Nat Plants. 2016 Nov 21;2:16178 [PMID: 27869799]
  71. Nature. 2014 Aug 14;512(7513):208-212 [PMID: 25043021]
  72. Cell. 2015 May 21;161(5):1138-1151 [PMID: 25981667]
  73. Cold Spring Harb Perspect Biol. 2017 Mar 1;9(3):null [PMID: 27920039]
  74. Cell Tissue Res. 1984;236(2):305-15 [PMID: 6733756]
  75. PLoS Genet. 2014 Jan;10(1):e1004047 [PMID: 24391516]
  76. Sci Rep. 2016 Aug 22;6:31697 [PMID: 27545962]
  77. PLoS Biol. 2017 Apr 17;15(4):e2001069 [PMID: 28414715]
  78. Sci Rep. 2015 Nov 20;5:17059 [PMID: 26586468]
  79. J Biol Chem. 2009 Jul 31;284(31):20602-14 [PMID: 19509278]
  80. Sci Rep. 2013;3:2054 [PMID: 23792593]
  81. Cell. 2013 Nov 7;155(4):793-806 [PMID: 24209618]
  82. Elife. 2013 Apr 30;2:e00473 [PMID: 23638299]
  83. Proc Natl Acad Sci U S A. 1989 Jan;86(1):172-6 [PMID: 2911566]
  84. Genome Res. 2015 Dec;25(12):1848-59 [PMID: 26486724]
  85. Mol Cell Biol. 2012 Feb;32(3):717-28 [PMID: 22124155]
  86. PLoS Biol. 2013 Nov;11(11):e1001703 [PMID: 24348200]

MeSH Term

Animals
Arabidopsis
Circadian Clocks
Gene Expression
Humans
Protein Biosynthesis
Ribosomal Proteins
Ribosomes
Signal Transduction

Chemicals

Ribosomal Proteins

Word Cloud

Created with Highcharts 10.0.0clocktranslationdielgeneexpressioncontrolcircadianproteinRNAorganismstranscriptionalsorhythmicplantscyclesproteinscoursedaycanonicaloperatescircuitcontrolledleveltranscriptionalmajoroutputHoweverexplainobservedrhythmsaccumulationAlthoughclearinvolvesprocessingturnovertwoyearsagolittleknowneukaryotedynamicsmRNArecentseriesstudiesanimalsdemonstratedefficiencywidespreadacrosstreelifetranscriptomessurprisingparallelspatternsmammalsexampleribosomalmitochondrialtranslationalmouseliverhumantissuecultureArabidopsisseedlingscontrastwaylight-darkchangesenvironmentalfactorsnutritionalsignalsinteractdrivemaydifferinvestigationneededidentifysignalingpathwaysbiochemicalmechanismssequencefeaturesphysiologicalimplicationsmakesribosomestick?Proteinsynthesisdiurnalcycleribosome

Similar Articles

Cited By