Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.

Jing Yuan, Xiang Li, Jinhe Zhang, Liao Luo, Qinglin Dong, Jinglei Lv, Yu Zhao, Xi Jiang, Shu Zhang, Wei Zhang, Tianming Liu
Author Information
  1. Jing Yuan: College of Computer and Control Engineering, Nankai University, Tianjin, China.
  2. Xiang Li: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  3. Jinhe Zhang: College of Computer and Control Engineering, Nankai University, Tianjin, China.
  4. Liao Luo: College of Computer and Control Engineering, Nankai University, Tianjin, China.
  5. Qinglin Dong: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  6. Jinglei Lv: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  7. Yu Zhao: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  8. Xi Jiang: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  9. Shu Zhang: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  10. Wei Zhang: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  11. Tianming Liu: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA. Electronic address: tliu@cs.uga.edu.

Abstract

Many recent literature studies have revealed interesting dynamics patterns of functional brain networks derived from fMRI data. However, it has been rarely explored how functional networks spatially overlap (or interact) and how such connectome-scale network interactions temporally evolve. To explore these unanswered questions, this paper presents a novel framework for spatio-temporal modeling of connectome-scale functional brain network interactions via two main effective computational methodologies. First, to integrate, pool and compare brain networks across individuals and their cognitive states under task performances, we designed a novel group-wise dictionary learning scheme to derive connectome-scale consistent brain network templates that can be used to define the common reference space of brain network interactions. Second, the temporal dynamics of spatial network interactions is modeled by a weighted time-evolving graph, and then a data-driven unsupervised learning algorithm based on the dynamic behavioral mixed-membership model (DBMM) is adopted to identify behavioral patterns of brain networks during the temporal evolution process of spatial overlaps/interactions. Experimental results on the Human Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful, diverse behavior patterns of connectome-scale network interactions. In particular, those networks' behavior patterns are distinct across HCP tasks such as motor, working memory, language and social tasks, and their dynamics well correspond to the temporal changes of specific task designs. In general, our framework offers a new approach to characterizing human brain function by quantitative description for the temporal evolution of spatial overlaps/interactions of connectome-scale brain networks in a standard reference space.

Keywords

References

  1. Neuroimage. 2013 Oct 15;80:169-89 [PMID: 23684877]
  2. Med Image Anal. 2015 Feb;20(1):112-34 [PMID: 25476415]
  3. Hum Brain Mapp. 2009 Dec;30(12):3865-86 [PMID: 19507160]
  4. J Cogn Neurosci. 2009 Nov;21(11):2047-72 [PMID: 19485699]
  5. Neuroimage. 2011 Jan 15;54(2):1140-50 [PMID: 20728554]
  6. Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 [PMID: 20471808]
  7. Neuroimage. 2015 Nov 1;121:227-42 [PMID: 26169321]
  8. Hum Brain Mapp. 2014 Oct;35(10):5262-78 [PMID: 24861961]
  9. Neuroimage. 2016 Jun;133:111-128 [PMID: 26952197]
  10. Neuroimage. 2011 May 15;56(2):616-26 [PMID: 20541019]
  11. J Cogn Neurosci. 2015 Apr;27(4):639-54 [PMID: 25321486]
  12. Cereb Cortex. 2013 Apr;23(4):786-800 [PMID: 22490548]
  13. Science. 2007 Feb 16;315(5814):972-6 [PMID: 17218491]
  14. Brain Connect. 2014 Nov;4(9):741-59 [PMID: 25163490]
  15. Neuron. 2007 Jun 7;54(5):677-96 [PMID: 17553419]
  16. Hum Brain Mapp. 2015 Sep;36(9):3373-86 [PMID: 26109476]
  17. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 [PMID: 16945915]
  18. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6 [PMID: 22323591]
  19. Neurosci Biobehav Rev. 2016 Dec;71:83-100 [PMID: 27592153]
  20. Hum Brain Mapp. 2001 Nov;14(3):140-51 [PMID: 11559959]
  21. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  22. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  23. Neuroimage Clin. 2016 Feb 18;11:302-15 [PMID: 26977400]
  24. Neuroimage. 2013 Oct 15;80:144-68 [PMID: 23702415]
  25. Nature. 2013 Nov 7;503(7474):51-8 [PMID: 24201278]
  26. Neuroimage. 2006 Aug 1;32(1):228-37 [PMID: 16777436]
  27. Hum Brain Mapp. 2014 Apr;35(4):1761-78 [PMID: 23671011]
  28. Neuroimage. 2005 Oct 15;28(1):227-37 [PMID: 16019230]
  29. ScientificWorldJournal. 2007 Dec 10;7:1922-9 [PMID: 18167607]
  30. Bioinformatics. 2009 Aug 1;25(15):1891-7 [PMID: 19435747]
  31. Brain Connect. 2014 Dec;4(10):769-79 [PMID: 24975024]
  32. IEEE Trans Biomed Eng. 2015 Apr;62(4):1120-31 [PMID: 25420254]
  33. IEEE Trans Med Imaging. 2015 Apr;34(4):846-60 [PMID: 25252277]
  34. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  35. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  36. Med Image Anal. 2013 Dec;17(8):1106-22 [PMID: 23938590]
  37. Hum Brain Mapp. 2014 Jul;35(7):3314-31 [PMID: 24222313]
  38. PLoS One. 2008 Apr 23;3(4):e2001 [PMID: 18431486]
  39. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  40. Cereb Cortex. 2005 Sep;15(9):1332-42 [PMID: 15635061]
  41. Neuroimage. 2015 Feb 15;107:190-197 [PMID: 25512040]
  42. Neuroscientist. 2006 Dec;12(6):512-23 [PMID: 17079517]
  43. Brain Imaging Behav. 2016 Dec;10(4):1004-1014 [PMID: 26489978]
  44. Neuroimage Clin. 2015 Dec 18;10:302-9 [PMID: 26900570]
  45. Med Image Comput Comput Assist Interv. 2016 Oct;9900:106-114 [PMID: 28149963]
  46. Front Neurosci. 2016 Jul 15;10:326 [PMID: 27471443]
  47. Med Image Comput Comput Assist Interv. 2007;10(Pt 1):767-74 [PMID: 18051128]
  48. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16714-9 [PMID: 23012417]
  49. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 [PMID: 19620724]
  50. Neuroimage. 2014 Jul 15;95:248-63 [PMID: 24675649]
  51. Phys Rev Lett. 2001 Nov 5;87(19):198701 [PMID: 11690461]

Grants

  1. R01 AG042599/NIA NIH HHS
  2. R01 DA033393/NIDA NIH HHS

MeSH Term

Algorithms
Brain
Brain Mapping
Connectome
Humans
Image Processing, Computer-Assisted
Machine Learning
Magnetic Resonance Imaging
Models, Neurological
Nerve Net

Word Cloud

Created with Highcharts 10.0.0brainnetworknetworksconnectome-scaleinteractionsdynamicspatternstemporalfunctionalfMRItaskspatialdatanovelframeworkmodelingviaacrosslearningcanreferencespacetime-evolvingbehavioralevolutionoverlaps/interactionsHCPbehaviortasksSpatio-temporalManyrecentliteraturestudiesrevealedinterestingderivedHoweverrarelyexploredspatiallyoverlapinteracttemporallyevolveexploreunansweredquestionspaperpresentsspatio-temporaltwomaineffectivecomputationalmethodologiesFirstintegratepoolcompareindividualscognitivestatesperformancesdesignedgroup-wisedictionaryschemederiveconsistenttemplatesuseddefinecommonSecondmodeledweightedgraphdata-drivenunsupervisedalgorithmbaseddynamicmixed-membershipmodelDBMMadoptedidentifyprocessExperimentalresultsHumanConnectomeProjectshowedmethodsrevealmeaningfuldiverseparticularnetworks'distinctmotorworkingmemorylanguagesocialwellcorrespondchangesspecificdesignsgeneraloffersnewapproachcharacterizinghumanfunctionquantitativedescriptionstandardgraphsFunctionalinteractionTask-based

Similar Articles

Cited By