siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease.

Emily P Thi, Chad E Mire, Amy Ch Lee, Joan B Geisbert, Raul Ursic-Bedoya, Krystle N Agans, Marjorie Robbins, Daniel J Deer, Robert W Cross, Andrew S Kondratowicz, Karla A Fenton, Ian MacLachlan, Thomas W Geisbert
Author Information
  1. Emily P Thi: Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada.
  2. Chad E Mire: Galveston National Laboratory and.
  3. Amy Ch Lee: Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada.
  4. Joan B Geisbert: Galveston National Laboratory and.
  5. Raul Ursic-Bedoya: Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada.
  6. Krystle N Agans: Galveston National Laboratory and.
  7. Marjorie Robbins: Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada.
  8. Daniel J Deer: Galveston National Laboratory and.
  9. Robert W Cross: Galveston National Laboratory and.
  10. Andrew S Kondratowicz: Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada.
  11. Karla A Fenton: Galveston National Laboratory and.
  12. Ian MacLachlan: Arbutus Biopharma Corporation, Burnaby, British Columbia, Canada.
  13. Thomas W Geisbert: Galveston National Laboratory and.

Abstract

Ebolaviruses and marburgviruses belong to the family Filoviridae and cause high lethality in infected patients. There are currently no licensed filovirus vaccines or antiviral therapies. The development of broad-spectrum therapies against members of the Marburgvirus genus, including Marburg virus (MARV) and Ravn virus (RAVV), is difficult because of substantial sequence variability. RNAi therapeutics offer a potential solution, as identification of conserved target nucleotide sequences may confer activity across marburgvirus variants. Here, we assessed the therapeutic efficacy of lipid nanoparticle (LNP) delivery of a single nucleoprotein-targeting (NP-targeting) siRNA in nonhuman primates at advanced stages of MARV or RAVV disease to mimic cases in which patients begin treatment for fulminant disease. Sixteen rhesus monkeys were lethally infected with MARV or RAVV and treated with NP siRNA-LNP, with MARV-infected animals beginning treatment four or five days after infection and RAVV-infected animals starting treatment three or six days after infection. While all untreated animals succumbed to disease, NP siRNA-LNP treatment conferred 100% survival of RAVV-infected macaques, even when treatment began just 1 day prior to the death of the control animals. In MARV-infected animals, day-4 treatment initiation resulted in 100% survival, and day-5 treatment resulted in 50% survival. These results identify a single siRNA therapeutic that provides broad-spectrum protection against both MARV and RAVV.

Keywords

References

  1. Nature. 2015 May 21;521(7552):362-5 [PMID: 25901685]
  2. Nat Microbiol. 2016 Aug 22;1(10 ):16142 [PMID: 27670117]
  3. J Infect Dis. 2015 Oct 1;212 Suppl 2:S258-70 [PMID: 26092858]
  4. N Engl J Med. 2006 Aug 31;355(9):909-19 [PMID: 16943403]
  5. Lancet. 2010 May 29;375(9729):1896-905 [PMID: 20511019]
  6. Nucleic Acids Res. 2005 Mar 21;33(5):1671-7 [PMID: 15781493]
  7. J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 [PMID: 17940973]
  8. Nat Med. 2010 Sep;16(9):991-4 [PMID: 20729866]
  9. Lancet Infect Dis. 2014 May;14(5):375 [PMID: 24877203]
  10. Nature. 2001 May 24;411(6836):494-8 [PMID: 11373684]
  11. Nature. 2014 Apr 17;508(7496):402-5 [PMID: 24590073]
  12. Nucleic Acids Res. 2003 Jan 15;31(2):589-95 [PMID: 12527766]
  13. J Infect Dis. 2014 Feb 15;209(4):562-70 [PMID: 23990568]
  14. J Infect Dis. 2017 Jun 15;215(12 ):1862-1872 [PMID: 28863472]
  15. Sci Rep. 2016 Feb 18;6:21422 [PMID: 26888011]
  16. J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31 [PMID: 21987738]
  17. Gastroenterology. 2014 Jan;146(1):63-6.e5 [PMID: 24076507]
  18. PLoS Med. 2016 Apr 19;13(4):e1001997 [PMID: 27093560]
  19. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5034-9 [PMID: 22411795]
  20. Sci Transl Med. 2014 Aug 20;6(250):250ra116 [PMID: 25143366]
  21. J Am Chem Soc. 2014 Dec 10;136(49):16958-61 [PMID: 25434769]
  22. J Virol. 2006 Jul;80(13):6497-516 [PMID: 16775337]
  23. Rev Med Virol. 2010 Nov;20(6):344-57 [PMID: 20658513]
  24. Lancet. 1982 Apr 10;1(8276):816-20 [PMID: 6122054]
  25. N Engl J Med. 2014 Oct 9;371(15):1418-25 [PMID: 24738640]
  26. Nat Biotechnol. 2003 Jun;21(6):635-7 [PMID: 12754523]
  27. Lancet. 2006 Apr 29;367(9520):1399-404 [PMID: 16650649]
  28. Sci Transl Med. 2017 Apr 5;9(384):null [PMID: 28381540]
  29. Int J Nanomedicine. 2016 Jul 05;11:3077-86 [PMID: 27462152]
  30. Ger Med Mon. 1968 Oct;13(10):457-70 [PMID: 4974179]
  31. J Clin Virol. 2015 Mar;64:111-9 [PMID: 25660265]

Grants

  1. U19 AI109711/NIAID NIH HHS
  2. UC7 AI094660/NIAID NIH HHS

MeSH Term

Animals
Drug Delivery Systems
Macaca mulatta
Marburg Virus Disease
Marburgvirus
Nanoparticles
RNA, Small Interfering

Chemicals

RNA, Small Interfering

Word Cloud

Created with Highcharts 10.0.0treatmentdiseaseanimalsMARVRAVVvirussiRNAsurvivalinfectedpatientstherapiesbroad-spectrumMarburgRavntherapeuticsinglenonhumanprimatesadvancedNPsiRNA-LNPMARV-infecteddaysinfectionRAVV-infected100%resultedEbolavirusesmarburgvirusesbelongfamilyFiloviridaecausehighlethalitycurrentlylicensedfilovirusvaccinesantiviraldevelopmentmembersMarburgvirusgenusincludingdifficultsubstantialsequencevariabilityRNAitherapeuticsofferpotentialsolutionidentificationconservedtargetnucleotidesequencesmayconferactivityacrossmarburgvirusvariantsassessedefficacylipidnanoparticleLNPdeliverynucleoprotein-targetingNP-targetingstagesmimiccasesbeginfulminantSixteenrhesusmonkeyslethallytreatedbeginningfourfivestartingthreesixuntreatedsuccumbedconferredmacaquesevenbeganjust1daypriordeathcontrolday-4initiationday-550%resultsidentifyprovidesprotectionrescuesDrugtherapyInfectiousVirology

Similar Articles

Cited By