Overlooked Short Toxin-Like Proteins: A Shortcut to Drug Design.

Michal Linial, Nadav Rappoport, Dan Ofer
Author Information
  1. Michal Linial: Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. michall@cc.huji.ac.il. ORCID
  2. Nadav Rappoport: Institute for Computational Health Sciences, UCSF, San Francisco, CA 94158, USA. nadav.rappoport@ucsf.edu. ORCID
  3. Dan Ofer: Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. ddofer@gmail.com. ORCID

Abstract

Short stable peptides have huge potential for novel therapies and biosimilars. Cysteine-rich short proteins are characterized by multiple disulfide bridges in a compact structure. Many of these metazoan proteins are processed, folded, and secreted as soluble stable folds. These properties are shared by both marine and terrestrial animal toxins. These stable short proteins are promising sources for new drug development. We developed ClanTox (classifier of animal toxins) to identify toxin-like proteins (TOLIPs) using machine learning models trained on a large-scale proteomic database. Insects proteomes provide a rich source for protein innovations. Therefore, we seek overlooked toxin-like proteins from insects (coined iTOLIPs). Out of 4180 short (<75 amino acids) secreted proteins, 379 were predicted as iTOLIPs with high confidence, with as many as 30% of the genes marked as uncharacterized. Based on bioinformatics, structure modeling, and data-mining methods, we found that the most significant group of predicted iTOLIPs carry antimicrobial activity. Among the top predicted sequences were 120 termicin genes from termites with antifungal properties. Structural variations of insect antimicrobial peptides illustrate the similarity to a short version of the defensin fold with antifungal specificity. We also identified 9 proteins that strongly resemble ion channel inhibitors from scorpion and conus toxins. Furthermore, we assigned functional fold to numerous uncharacterized iTOLIPs. We conclude that a systematic approach for finding iTOLIPs provides a rich source of peptides for drug design and innovative therapeutic discoveries.

Keywords

References

  1. Chem Rev. 2014 Jan 22;114(2):901-26 [PMID: 24446748]
  2. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W363-8 [PMID: 19429697]
  3. Appl Microbiol Biotechnol. 2002 Jul;59(2-3):125-34 [PMID: 12111137]
  4. Trends Ecol Evol. 2013 Apr;28(4):219-29 [PMID: 23219381]
  5. Toxins (Basel). 2013 Jul 23;5(7):1314-31 [PMID: 23881252]
  6. Biochem J. 2004 Mar 15;378(Pt 3):717-26 [PMID: 14674883]
  7. J Mol Biol. 2015 Jan 16;427(1):158-175 [PMID: 25088688]
  8. Expert Opin Biol Ther. 2011 Nov;11(11):1469-84 [PMID: 21939428]
  9. Toxicon. 2015 Jun 1;99:68-72 [PMID: 25796346]
  10. Methods Mol Biol. 2016;1374:23-54 [PMID: 26519399]
  11. Biochim Biophys Acta. 2013 Feb;1828(2):724-31 [PMID: 23088912]
  12. Bioinformatics. 2014 Apr 1;30(7):931-40 [PMID: 24336809]
  13. Bioinformatics. 2010 Sep 15;26(18):i482-8 [PMID: 20823311]
  14. Genome Res. 2008 Jun;18(6):986-94 [PMID: 18463304]
  15. Curr Protein Pept Sci. 2013 Sep;14(6):515-31 [PMID: 23968349]
  16. Biochemistry. 2012 Mar 6;51(9):1885-94 [PMID: 22332965]
  17. Annu Rev Genomics Hum Genet. 2009;10:483-511 [PMID: 19640225]
  18. Genome Res. 2005 Mar;15(3):403-20 [PMID: 15741511]
  19. BMC Genomics. 2015 Aug 07;16:583 [PMID: 26251035]
  20. Adv Exp Med Biol. 2016;917:121-44 [PMID: 27236555]
  21. ACS Chem Biol. 2013 Mar 15;8(3):488-499 [PMID: 23170954]
  22. Toxins (Basel). 2012 Nov 16;4(11):1367-84 [PMID: 23202321]
  23. Curr Pharm Des. 2016;22(14):2124-33 [PMID: 26818859]
  24. Mar Drugs. 2013 Jun 14;11(6):2069-112 [PMID: 23771044]
  25. Mol Biol Evol. 2011 Sep;28(9):2637-49 [PMID: 21478373]
  26. Toxicon. 2013 Dec 15;76:328-42 [PMID: 23891887]
  27. Toxicon. 2007 Feb;49(2):271-84 [PMID: 17113616]
  28. Nat Prod Rep. 2007 Feb;24(1):145-61 [PMID: 17268611]
  29. J Biol Chem. 2002 Jun 28;277(26):23627-37 [PMID: 11976325]
  30. Chem Biol Drug Des. 2013 Jan;81(1):136-47 [PMID: 23253135]
  31. Genome Res. 2011 Aug;21(8):1339-48 [PMID: 21719571]
  32. Curr Opin Biotechnol. 2004 Dec;15(6):599-606 [PMID: 15560988]
  33. Elife. 2013 May 21;2:e00594 [PMID: 23705070]
  34. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  35. Biochemistry. 2001 Jul 27;40(28):8273-82 [PMID: 11444973]
  36. Curr Opin Chem Biol. 2008 Aug;12(4):441-7 [PMID: 18678277]
  37. BMC Bioinformatics. 2005 Mar 08;6:46 [PMID: 15755318]
  38. Prog Nucleic Acid Res Mol Biol. 1998;59:307-64 [PMID: 9427847]
  39. Toxicon. 2012 Oct;60(5):943-53 [PMID: 22750531]
  40. Physiol Rev. 2004 Jan;84(1):41-68 [PMID: 14715910]
  41. Toxins (Basel). 2015 Oct 26;7(10):4366-80 [PMID: 26516914]
  42. Gene. 2012 Mar 15;496(1):1-7 [PMID: 22285376]
  43. J Biol Chem. 2005 Apr 1;280(13):12405-12 [PMID: 15596436]
  44. Acta Chim Slov. 2011 Dec;58(4):693-701 [PMID: 24061117]
  45. Science. 2010 Jan 15;327(5963):343-8 [PMID: 20075255]
  46. Trends Pharmacol Sci. 2015 Feb;36(2):109-23 [PMID: 25528970]
  47. Neuron. 2002 Mar 14;33(6):893-903 [PMID: 11906696]
  48. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  49. Mini Rev Med Chem. 2003 Nov;3(7):785-7 [PMID: 14529519]
  50. Curr Pharm Des. 2008;14(24):2503-18 [PMID: 18781998]
  51. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51 [PMID: 22173434]
  52. Mediators Inflamm. 2010;2010:903295 [PMID: 20300540]
  53. Toxicon. 2003 Oct;42(5):549-55 [PMID: 14529737]
  54. Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319 [PMID: 27899672]
  55. Nat Methods. 2011 Dec 25;9(2):173-5 [PMID: 22198341]
  56. IUBMB Life. 2000 Jul;50(1):57-61 [PMID: 11087122]
  57. J Mol Evol. 2003 Jul;57(1):110-29 [PMID: 12962311]
  58. Nature. 2011 Nov 16;479(7373):410-4 [PMID: 22094702]
  59. Pharmacol Res. 2016 Oct;112:30-36 [PMID: 26826284]
  60. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7034-9 [PMID: 21482758]
  61. Hum Mol Genet. 2003 Nov 15;12(22):3017-24 [PMID: 14506129]
  62. Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281 [PMID: 27794042]
  63. Sci Am. 2005 Apr;292(4):70-5 [PMID: 15915817]
  64. Sci Rep. 2017 Jan 20;7:40883 [PMID: 28106092]
  65. J Nat Prod. 2014 Feb 28;77(2):304-10 [PMID: 24499386]
  66. Toxicon. 2014 Dec 15;92:193-200 [PMID: 25448391]
  67. Nucleic Acids Res. 2012 Jan;40(Database issue):D313-20 [PMID: 22121228]
  68. Amino Acids. 2011 Jan;40(1):15-28 [PMID: 20177945]
  69. J Venom Anim Toxins Incl Trop Dis. 2016 Jan 28;22:5 [PMID: 26823660]
  70. Peptides. 2006 Nov;27(11):2614-23 [PMID: 16914230]
  71. Biochem Biophys Res Commun. 2006 Sep 22;348(2):514-23 [PMID: 16890198]
  72. Dev Comp Immunol. 2015 Feb;48(2):324-41 [PMID: 24950415]
  73. Sci Rep. 2016 Aug 26;6:32175 [PMID: 27562645]
  74. J Pept Sci. 2004 Dec;10(12):714-8 [PMID: 15635623]
  75. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  76. Nat Methods. 2013 Mar;10(3):221-7 [PMID: 23353650]
  77. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3782-91 [PMID: 26150494]
  78. Curr Pharm Des. 2008;14(24):2462-79 [PMID: 18781995]
  79. J Mol Biol. 2007 Jun 1;369(2):553-66 [PMID: 17433819]
  80. J Mol Biol. 1999 Jan 29;285(4):1749-63 [PMID: 9917409]
  81. Toxicon. 2002 Sep;40(9):1299-305 [PMID: 12220715]

MeSH Term

Animals
Anti-Bacterial Agents
Antifungal Agents
Drug Design
Insect Proteins
Insecta
Ion Channels
Machine Learning
Models, Molecular
Peptides
Proteomics
Toxins, Biological

Chemicals

Anti-Bacterial Agents
Antifungal Agents
Insect Proteins
Ion Channels
Peptides
Toxins, Biological