Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective.

Gayathri Ilangumaran, Donald L Smith
Author Information
  1. Gayathri Ilangumaran: Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
  2. Donald L Smith: Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.

Abstract

Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR). Recent advances in molecular studies have yielded insights into the signaling networks of plant-microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

Keywords

References

  1. Plant Cell Environ. 2016 Apr;39(4):823-33 [PMID: 26470009]
  2. Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8 [PMID: 19568745]
  3. Springerplus. 2013 Oct 31;2:587 [PMID: 25674415]
  4. Funct Plant Biol. 2016 Mar;43(2):161-172 [PMID: 32480450]
  5. Nature. 2004 Mar 25;428(6981):412-4 [PMID: 15042087]
  6. Science. 1998 Jun 19;280(5371):1906-7 [PMID: 9669949]
  7. Front Plant Sci. 2016 Aug 30;7:1314 [PMID: 27625672]
  8. Plant Mol Biol. 2016 Apr;90(6):623-34 [PMID: 26830772]
  9. Plant Physiol Biochem. 2013 May;66:1-9 [PMID: 23454292]
  10. Annu Rev Microbiol. 2002;56:187-209 [PMID: 12142477]
  11. Funct Plant Biol. 2012 Feb;39(1):82-90 [PMID: 32480762]
  12. Front Plant Sci. 2015 Jun 23;6:466 [PMID: 26157451]
  13. J Exp Bot. 2004 Dec;55(408):2641-6 [PMID: 15361528]
  14. FEMS Microbiol Rev. 2000 Oct;24(4):487-506 [PMID: 10978548]
  15. Can J Microbiol. 2009 Nov;55(11):1302-9 [PMID: 19940939]
  16. PLoS One. 2014 Oct 13;9(10):e110392 [PMID: 25310013]
  17. Nat Rev Microbiol. 2013 Apr;11(4):252-63 [PMID: 23493145]
  18. Sci Rep. 2016 Oct 06;6:34768 [PMID: 27708387]
  19. Biomed Res Int. 2016;2016:6284547 [PMID: 26951880]
  20. Plant Biol (Stuttg). 2015 Jan;17(1):288-93 [PMID: 24750405]
  21. Front Microbiol. 2016 Nov 17;7:1838 [PMID: 27909432]
  22. Nature. 2009 Jun 25;459(7250):1071-8 [PMID: 19553990]
  23. J Exp Bot. 2001 Jul;52(360):1383-400 [PMID: 11457898]
  24. Microbiol Mol Biol Rev. 1999 Dec;63(4):968-89, table of contents [PMID: 10585971]
  25. Appl Environ Microbiol. 2005 Sep;71(9):4951-9 [PMID: 16151072]
  26. Plant Physiol. 2005 Mar;137(3):819-28 [PMID: 15734917]
  27. J Biochem Mol Biol. 2007 May 31;40(3):396-403 [PMID: 17562291]
  28. PLoS One. 2011 Mar 18;6(3):e17961 [PMID: 21437257]
  29. New Phytol. 1985 Sep;101(1):25-77 [PMID: 33873830]
  30. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8436-41 [PMID: 12034882]
  31. Braz J Microbiol. 2012 Jul;43(3):1183-91 [PMID: 24031943]
  32. Annu Rev Microbiol. 2009;63:541-56 [PMID: 19575558]
  33. Ann Bot. 2014 Jan;113(1):7-18 [PMID: 24265348]
  34. Biotechnol Lett. 2010 Nov;32(11):1559-70 [PMID: 20635120]
  35. Ann Bot. 2003 Apr;91(5):503-27 [PMID: 12646496]
  36. Can J Microbiol. 2007 Nov;53(11):1195-202 [PMID: 18026213]
  37. Front Plant Sci. 2017 Apr 24;8:611 [PMID: 28484479]
  38. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499 [PMID: 15012199]
  39. FEMS Microbiol Lett. 2009 Apr;293(2):220-31 [PMID: 19260963]
  40. Plant Physiol Biochem. 2014 Nov;84:115-124 [PMID: 25270162]
  41. J Plant Physiol. 2016 Feb 1;191:111-9 [PMID: 26759938]
  42. Scientifica (Cairo). 2012;2012:963401 [PMID: 24278762]
  43. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  44. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  45. Microb Cell Fact. 2006 Feb 16;5:7 [PMID: 16483356]
  46. Annu Rev Plant Biol. 2004;55:373-99 [PMID: 15377225]
  47. Curr Opin Plant Biol. 2004 Aug;7(4):429-33 [PMID: 15231266]
  48. Mol Cells. 2014 Feb;37(2):109-17 [PMID: 24598995]
  49. Biotechnol Adv. 1999 Oct;17(4-5):319-39 [PMID: 14538133]
  50. Plant Physiol Biochem. 2010 Dec;48(12):909-30 [PMID: 20870416]
  51. J Appl Microbiol. 2015 Aug;119(2):539-51 [PMID: 26042866]
  52. Annu Rev Plant Biol. 2002;53:247-73 [PMID: 12221975]
  53. Physiol Plant. 2017 Dec;161(4):502-514 [PMID: 28786221]
  54. Plant Cell Environ. 2002 Feb;25(2):239-250 [PMID: 11841667]
  55. J Exp Bot. 2012 May;63(9):3415-28 [PMID: 22403432]
  56. Arch Microbiol. 1998 Oct;170(5):319-30 [PMID: 9818351]
  57. Genet Eng (N Y). 2006;27:141-77 [PMID: 16382876]
  58. Plant Physiol. 2005 Mar;137(3):807-18 [PMID: 15734907]
  59. Trends Plant Sci. 2009 Jan;14(1):1-4 [PMID: 19056309]
  60. Int J Phytoremediation. 2015;17(1-6):40-8 [PMID: 25174423]
  61. J Exp Bot. 2006;57(5):1079-95 [PMID: 16513814]
  62. Planta. 2010 Jul;232(2):533-43 [PMID: 20499084]
  63. Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4): [PMID: 21084388]
  64. Ann Bot. 2015 Feb;115(3):327-31 [PMID: 25844430]
  65. Mol Plant Microbe Interact. 2008 Jun;21(6):737-44 [PMID: 18624638]
  66. Int J Phytoremediation. 2015;17(11):1123-36 [PMID: 25942689]
  67. IUBMB Life. 2015 Sep;67(9):677-86 [PMID: 26314939]
  68. Physiol Plant. 2016 Sep;158(1):34-44 [PMID: 26932244]
  69. Front Microbiol. 2015 Jul 28;6:780 [PMID: 26284057]
  70. Funct Plant Biol. 2016 Jul;43(7):632-642 [PMID: 32480492]
  71. Curr Opin Biotechnol. 2009 Dec;20(6):642-50 [PMID: 19875278]
  72. Trends Plant Sci. 2004 Oct;9(10):490-8 [PMID: 15465684]
  73. PLoS One. 2016 Aug 25;11(8):e0160660 [PMID: 27560934]
  74. Plant Signal Behav. 2012 Jan;7(1):79-85 [PMID: 22301973]
  75. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3735-40 [PMID: 10725350]
  76. Genet Mol Biol. 2012 Dec;35(4 (suppl)):1044-51 [PMID: 23411488]
  77. Front Plant Sci. 2015 Sep 14;6:722 [PMID: 26442036]
  78. PLoS One. 2016 Mar 24;11(3):e0152478 [PMID: 27011317]
  79. Int J Mol Sci. 2016 Jun 21;17(6): [PMID: 27338359]
  80. Front Plant Sci. 2015 Sep 09;6:709 [PMID: 26442023]
  81. J Exp Bot. 2006;57(5):1149-60 [PMID: 16449373]

Word Cloud

Created with Highcharts 10.0.0stresstoleranceplantsalinityPGPRgrowthrhizobacteriasignalingSalinitycropplantsbeneficialsaltnutrientosmoticionstatusfunctionacidaffectsmajorabioticlimitsproductivitywell-understoodenvironmentaladaptationsgenetictraitsregulateimpartingknowledgegainedtowardsimprovementremainarduousHarnessingpotentialmicroorganismspresentrhizospherealternativestrategyimprovingreviewintendselucidateunderstandingmechanismsattributedpromotingRecentadvancesmolecularstudiesyieldedinsightsnetworksplant-microbeinteractionscontributeeffectsinvolveboostingkeyphysiologicalprocessesincludingwateruptakephotosynthesissource-sinkrelationshipspromotedevelopmentregulationbalancehomeostasisconductedmodulationphytohormonegeneexpressionproteinmetabolitesynthesisresultimprovedantioxidantactivityosmolyteaccumulationprotontransportmachinerycompartmentalizationreducetoxicityFurthermoreadditionindole-3-acetic1-aminocyclopropane-1-carboxylicdeaminasebiosynthesisextracellularsecretionsmoleculeselicitresponsivepathwaysApplicationinoculantspromisingmeasurecombatagriculturalfieldstherebyincreasingglobalfoodproductionPlantGrowthPromotingRhizobacteriaAmeliorationStress:SystemsBiologyPerspectivephytohormones

Similar Articles

Cited By