Genomic Environment Impacts Color Vision Evolution in a Family with Visually Based Sexual Selection.

Benjamin A Sandkam, Jeffrey B Joy, Corey T Watson, Felix Breden
Author Information
  1. Benjamin A Sandkam: Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
  2. Jeffrey B Joy: Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
  3. Corey T Watson: Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
  4. Felix Breden: Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.

Abstract

Many models of evolution by sexual selection predict a coevolution of sensory systems and mate preferences, but the genomic architecture (number and arrangement of contributing loci) underlying these characters could constrain this coevolution. Here, we examine how the genomic organization and evolution of the opsin genes (responsible for tuning color vision) can influence the evolutionary trajectory of sexually selected traits across 15 species in the family Poeciliidae, which includes classic systems for studies of color-mediated sexual selection such as guppies, swordtails, and mollies. Although male coloration patterns and the importance of this coloration in female mate choice vary widely within and among genera, sequencing revealed low variability at amino acid sites that tune Long Wavelength-Sensitive (LWS) opsins in this speciose family. Although most opsin genes in these species appear to have evolved along traditional mutation-selection dynamics, we identified high rates of gene conversion between two of the LWS loci (LWS-1 and LWS-3), likely due to the inverted tandem repeat nature of these genes. Yet members of the subgenus Lebistes appear to resist LWS gene conversion. The LWS opsins are responsible for detecting and discriminating red and orange coloration-a key sexually selected trait in members of the subgenus Lebistes. Taken together these results suggest selection is acting against the homogenizing effects of gene conversion to maintain LWS-1/LWS-3 differences within this subgenus.

Keywords

References

  1. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  2. Mol Phylogenet Evol. 2012 Mar;62(3):986-1008 [PMID: 22178363]
  3. PLoS One. 2014 Jul 02;9(7):e101497 [PMID: 24987856]
  4. Vision Res. 2016 Oct;127:67-73 [PMID: 27476645]
  5. Genes (Basel). 2010 Sep 30;1(3):349-56 [PMID: 24710091]
  6. Genomics. 2007 Aug;90(2):159-75 [PMID: 17544617]
  7. Nat Rev Genet. 2007 Oct;8(10):762-75 [PMID: 17846636]
  8. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  9. Mol Ecol. 2017 Mar;26(5):1343-1356 [PMID: 27997048]
  10. J Mol Evol. 2011 Feb;72(2):240-52 [PMID: 21170644]
  11. Bioinformatics. 2006 Dec 15;22(24):3096-8 [PMID: 17110367]
  12. Proc Biol Sci. 2007 Jan 7;274(1606):33-42 [PMID: 17015333]
  13. J Evol Biol. 2015 Apr;28(4):739-55 [PMID: 25789690]
  14. Trends Ecol Evol. 2001 Jul 1;16(7):364-371 [PMID: 11403869]
  15. BMC Evol Biol. 2016 May 18;16(1):106 [PMID: 27193604]
  16. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  17. BMC Evol Biol. 2011 Oct 22;11:312 [PMID: 22017819]
  18. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  19. BMC Evol Biol. 2008 Jul 18;8:210 [PMID: 18638376]
  20. Heredity (Edinb). 2014 Nov;113(5):381-9 [PMID: 24690753]
  21. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  22. Mol Biol Evol. 2012 Aug;29(8):1969-73 [PMID: 22367748]
  23. Genetics. 2010 Feb;184(2):517-27 [PMID: 19948889]
  24. Evolution. 2013 Jan;67(1):120-30 [PMID: 23289566]
  25. Mol Phylogenet Evol. 1999 Jul;12(2):95-104 [PMID: 10381313]
  26. J Mol Evol. 2012 Oct;75(3-4):79-91 [PMID: 23080353]
  27. Am J Hum Genet. 2004 Sep;75(3):363-75 [PMID: 15252758]
  28. BMC Evol Biol. 2015 Oct 16;15:225 [PMID: 26475579]
  29. Heredity (Edinb). 2004 Mar;92(3):156-62 [PMID: 14735138]
  30. Genetics. 2008 Aug;179(4):2037-43 [PMID: 18660543]
  31. Mol Biol Evol. 1998 May;15(5):560-7 [PMID: 9580985]
  32. Mol Ecol. 2015 Feb;24(3):596-609 [PMID: 25556876]
  33. Bioinformatics. 2014 Nov 15;30(22):3276-8 [PMID: 25095880]
  34. Mol Biol Evol. 1989 Sep;6(5):526-38 [PMID: 2677599]
  35. BMC Evol Biol. 2010 Mar 30;10:87 [PMID: 20353595]
  36. Trends Ecol Evol. 2006 Jun;21(6):296-302 [PMID: 16769428]
  37. Nature. 2014 Sep 11;513(7517):233-6 [PMID: 25043015]
  38. Genes (Basel). 2010 Dec 09;1(3):452-68 [PMID: 24710096]
  39. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1493-8 [PMID: 25548152]
  40. J Exp Biol. 2008 Sep;211(Pt 18):3041-56 [PMID: 18775941]
  41. Genetics. 2001 Aug;158(4):1697-710 [PMID: 11545071]
  42. Vision Res. 1990;30(2):225-33 [PMID: 2309457]

MeSH Term

Animals
Color Vision
Cyprinodontiformes
Evolution, Molecular
Female
Fish Proteins
Gene Conversion
Gene Duplication
Genetic Loci
Male
Mating Preference, Animal
Opsins
Phylogeny
Rod Opsins
Sequence Analysis, DNA

Chemicals

Fish Proteins
Opsins
Rod Opsins
long-wavelength opsin

Word Cloud

Created with Highcharts 10.0.0LWSgeneconversionselectionopsingenessubgenusevolutionsexualcoevolutionsystemsmategenomiclociresponsiblevisionsexuallyselectedspeciesfamilyPoeciliidaeAlthoughcolorationwithinopsinsappearmembersLebistesManymodelspredictsensorypreferencesarchitecturenumberarrangementcontributingunderlyingcharactersconstrainexamineorganizationtuningcolorcaninfluenceevolutionarytrajectorytraitsacross15includesclassicstudiescolor-mediatedguppiesswordtailsmolliesmalepatternsimportancefemalechoicevarywidelyamonggenerasequencingrevealedlowvariabilityaminoacidsitestuneLongWavelength-Sensitivespecioseevolvedalongtraditionalmutation-selectiondynamicsidentifiedhighratestwoLWS-1LWS-3likelydueinvertedtandemrepeatnatureYetresistdetectingdiscriminatingredorangecoloration-akeytraitTakentogetherresultssuggestactinghomogenizingeffectsmaintainLWS-1/LWS-3differencesGenomicEnvironmentImpactsColorVisionEvolutionFamilyVisuallyBasedSexualSelection

Similar Articles

Cited By