Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models.

Beatriz Moreno-Ortega, Guillaume Fort, Bertrand Muller, Yann Guédon
Author Information
  1. Beatriz Moreno-Ortega: LEPSE, INRA, Montpellier SupAgro, Montpellier, France.
  2. Guillaume Fort: LEPSE, INRA, Montpellier SupAgro, Montpellier, France.
  3. Bertrand Muller: LEPSE, INRA, Montpellier SupAgro, Montpellier, France.
  4. Yann Guédon: CIRAD, UMR AGAP, Montpellier, France.

Abstract

The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling ( and ). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes.

Keywords

References

  1. Funct Plant Biol. 2003 Jul;30(5):483-491 [PMID: 32689033]
  2. Plant Physiol. 2005 Nov;139(3):1255-67 [PMID: 16215225]
  3. New Phytol. 2007;174(2):332-341 [PMID: 17388896]
  4. Plant Physiol. 2003 Mar;131(3):1381-90 [PMID: 12644687]
  5. Plant Physiol. 1989 Jun;90(2):708-13 [PMID: 16666832]
  6. Plant Cell Physiol. 2005 Jan;46(1):174-84 [PMID: 15659445]
  7. Plant Physiol. 2001 Feb;125(2):519-22 [PMID: 11161008]
  8. Plant Physiol. 2002 Jun;129(2):854-64 [PMID: 12068124]
  9. Plant Physiol. 2001 Oct;127(2):645-54 [PMID: 11598238]
  10. Plant Signal Behav. 2006 Nov;1(6):296-304 [PMID: 19517000]
  11. Plant Mol Biol. 2006 Apr;60(6):963-79 [PMID: 16724264]
  12. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11313-7 [PMID: 7972055]
  13. Bull Math Biol. 1989;51(1):39-54 [PMID: 2706400]
  14. Genes Dev. 2004 Mar 15;18(6):700-14 [PMID: 15031265]
  15. J Exp Bot. 2002 Apr;53(369):689-98 [PMID: 11886889]
  16. Proc Natl Acad Sci U S A. 1939 May;25(5):248-52 [PMID: 16577890]
  17. Plant Physiol. 1999 Feb;119(2):681-92 [PMID: 9952465]
  18. New Phytol. 1987 Jan;105(1):27-56 [PMID: 33874022]
  19. Plant Physiol. 1990 May;93(1):222-30 [PMID: 16667439]
  20. PLoS Comput Biol. 2013;9(5):e1003026 [PMID: 23658505]
  21. Plant Methods. 2012 Mar 02;8:7 [PMID: 22385537]
  22. J Exp Bot. 2001 Jun;52(359):1259-68 [PMID: 11432944]
  23. Plant Physiol. 2004 Jun;135(2):1050-8 [PMID: 15181207]
  24. J Plant Growth Regul. 2002 Mar;21(1):60-67 [PMID: 11997812]
  25. J Exp Bot. 2015 Mar;66(5):1387-95 [PMID: 25540436]
  26. Plant Cell Environ. 2010 Feb;33(2):223-43 [PMID: 19906149]
  27. Am J Bot. 2003 Jun;90(6):823-31 [PMID: 21659177]
  28. Front Plant Sci. 2016 Jun 13;7:829 [PMID: 27379124]
  29. Plant Cell Environ. 2009 Nov;32(11):1561-72 [PMID: 19627567]
  30. Plant Physiol. 1992 Jul;99(3):879-85 [PMID: 16669015]
  31. Plant J. 2008 Jul;55(2):335-47 [PMID: 18435826]
  32. Plant Methods. 2010 Jul 02;6:17 [PMID: 20598116]
  33. Plant Physiol. 1996 Sep;112(1):3-4 [PMID: 11536754]
  34. Plant Physiol. 2003 Jul;132(3):1138-48 [PMID: 12857796]
  35. Trends Plant Sci. 2013 May;18(5):237-43 [PMID: 23123304]
  36. Stat Med. 2003 Oct 15;22(19):3055-71 [PMID: 12973787]
  37. Curr Biol. 2003 Aug 19;13(16):1435-41 [PMID: 12932329]
  38. Plant Cell. 2002 Dec;14(12):3237-53 [PMID: 12468740]
  39. Plant Physiol. 1998 Apr;116(4):1515-26 [PMID: 9536070]
  40. Plant Physiol. 1998 Mar;116(3):991-1001 [PMID: 9501131]
  41. J Exp Bot. 2015 Feb;66(4):1113-21 [PMID: 25628331]
  42. Trends Plant Sci. 2010 Jul;15(7):402-8 [PMID: 20621671]
  43. Science. 2008 Nov 28;322(5906):1380-4 [PMID: 19039136]
  44. Plant J. 2007 May;50(4):649-59 [PMID: 17425722]
  45. Plant Physiol. 2007 Jan;143(1):278-90 [PMID: 17098857]
  46. Plant Physiol. 1988 May;87(1):50-7 [PMID: 16666126]

Word Cloud

Created with Highcharts 10.0.0rootcellzoneelongationrootsdivisionzonesapexmodelslateralmaturemethodsbasedfeatureslengthprofilesdevelopmentalpiecewiselinearauxinusingprincipalcomponentanalysisidentificationlimitsstillmattercontroversycellularmolecularmarkerskinematicscomparedcomparativelyunderexploredSegmentationdevelopedidentifywithinbasisepidermalHeteroscedasticestimatedmaizevariouslengthswildtypetwomutantsaffectedsignalingoutputsindividualanalysescombinedmorphologicalfirsthairpositiondiametergloballyanalyzedThreecorrespondingidentifiedsometimesmissingarrestedresultsconsistentauxin-dependentcoordinationfluxdifferentiationproposedsegmentationextendknowledgeregulationslongitudinallyorganizedplantorgansmonocotleavesinternodesIdentifyingDevelopmentalZonesMaizeLateralRootCellLengthProfilesMultipleChange-PointModelsmutantdiversitymultiplechange-pointmodelfunction

Similar Articles

Cited By