Photocontrol of the GTPase activity of the small G protein K-Ras by using an azobenzene derivative.

Seigo Iwata, Shinsaku Maruta
Author Information
  1. Seigo Iwata: Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
  2. Shinsaku Maruta: Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.

Abstract

The small G protein Ras is a central regulator of cellular signal transduction processes, functioning as a molecular switch. Switch mechanisms utilizing conformational changes in nucleotide-binding motifs have been well studied at the molecular level. Azobenzene is a photochromic molecule that undergoes rapid and reversible isomerization between the and forms upon exposure to ultraviolet and visible light irradiation, respectively. Here, we introduced the sulfhydryl-reactive azobenzene derivative 4-phenylazophenyl maleimide (PAM) into the nucleotide-binding motif of Ras to regulate the GTPase activity by photoirradiation. We prepared four Ras mutants (G12C, Y32C, I36C, and Y64C) that have a single reactive cysteine residue in the nucleotide-binding motif. PAM was stoichiometrically incorporated into the cysteine residue of the mutants. The PAM-modified mutants exhibited reversible alterations in GTPase activity, nucleotide exchange rate, and interaction between guanine nucleotide exchange factor and Ras, accompanied by photoisomerization upon exposure to ultraviolet and visible light irradiation. The results suggest that incorporation of photochromic molecules into its nucleotide-binding motif enables photoreversible control of the function of the small G protein Ras.

Keywords

References

  1. Genetics. 1999 Sep;153(1):107-16 [PMID: 10471704]
  2. J Muscle Res Cell Motil. 1998 Nov;19(8):877-86 [PMID: 10047987]
  3. Cancer Res. 2012 May 15;72(10):2457-67 [PMID: 22589270]
  4. J Am Chem Soc. 2011 Dec 14;133(49):19684-7 [PMID: 22082305]
  5. Cell. 2003 Mar 7;112(5):685-95 [PMID: 12628188]
  6. J Biochem. 2007 Dec;142(6):691-8 [PMID: 17942477]
  7. J Biochem. 2004 Dec;136(6):839-46 [PMID: 15671495]
  8. Nature. 1996 May 30;381(6581):380-1 [PMID: 8632794]
  9. Chem Soc Rev. 2011 Aug;40(8):4422-37 [PMID: 21483974]
  10. Oncogene. 1998 Sep 17;17(11 Reviews):1395-413 [PMID: 9779987]
  11. Science. 1997 Jul 18;277(5324):333-8 [PMID: 9219684]
  12. Genes Cancer. 2011 Mar;2(3):344-58 [PMID: 21779504]
  13. Small GTPases. 2010 Jul;1(1):2-27 [PMID: 21686117]
  14. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4944-9 [PMID: 11320243]
  15. EMBO J. 2008 Jul 23;27(14):1995-2005 [PMID: 18596699]
  16. Biochem Biophys Res Commun. 1995 Jan 5;206(1):253-9 [PMID: 7818528]
  17. Acta Biochim Pol. 2001;48(4):829-50 [PMID: 11995995]
  18. J Biochem. 2014 Mar;155(3):195-206 [PMID: 24334276]
  19. Angew Chem Int Ed Engl. 1999 Sep;38(18):2771-2774 [PMID: 10508378]
  20. J Protein Chem. 1992 Dec;11(6):731-9 [PMID: 1466766]

Word Cloud

Created with Highcharts 10.0.0RasGproteinnucleotide-bindingGTPasesmallultravioletvisiblePAMmotifactivitymutantsnucleotideexchangemolecularAzobenzenephotochromicmoleculereversibleuponexposurelightirradiationazobenzenederivativecysteineresidueguaninefactorPhotocontrolcentralregulatorcellularsignaltransductionprocessesfunctioningswitchSwitchmechanismsutilizingconformationalchangesmotifswellstudiedlevelundergoesrapidisomerizationformsrespectivelyintroducedsulfhydryl-reactive4-phenylazophenylmaleimideregulatephotoirradiationpreparedfourG12CY32CI36CY64CsinglereactivestoichiometricallyincorporatedPAM-modifiedexhibitedalterationsrateinteractionaccompaniedphotoisomerizationresultssuggestincorporationmoleculesenablesphotoreversiblecontrolfunctionK-RasusingDMFNN-dimethylformamideDTTdithiothreitolGEFGTPguanosine5ʹ-triphosphateHEPES4-2-hydroxyethyl-1-piperazineethane-sulfonicacidNBD-GTP-O-{6-N-7-nitrobenz-2-oxa-l3-diazol-4-ylaminohexanoic}–GTP4-phenylazomaleinanilPhotochromicSmallUVVis

Similar Articles

Cited By