Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus.

Shaokui Yi, Yanhe Li, Linlin Shi, Long Zhang
Author Information
  1. Shaokui Yi: Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China. yishaokui@foxmail.com.
  2. Yanhe Li: Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China. liyanhe@mail.hzau.edu.cn.
  3. Linlin Shi: Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China. 376603966@webmail.hzau.edu.cn.
  4. Long Zhang: Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China. 15681195117@163.com.

Abstract

White spot syndrome virus (WSSV), one of the major pathogens of , has caused severe disruption to the aquaculture industry of in China. To reveal the gene regulatory mechanisms underlying WSSV infection, a comparative transcriptome analysis was performed among WSSV-infected susceptible individuals (GS), viral resistant individuals (GR), and a non-infected control group (GC). A total of 61,349 unigenes were assembled from nine libraries. Subsequently, 515 and 1033 unigenes exhibited significant differential expression in sensitive and resistant crayfish individuals compared to the control group (GC). Many differentially expressed genes (e.g., , P, , and ) observed in GR and GS play critical roles in pathogen recognition and viral defense reactions after WSSV infection. Importantly, the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway was identified to play critical roles in defense to WSSV infection for resistant crayfish individuals by upregulating the chondroitin sulfate related genes for the synthesis of WSSV-sensitive, functional chondroitin sulfate chains containing E units. Numerous genes and the key pathways identified between resistant and susceptible individuals provide valuable insights regarding antiviral response mechanisms of decapoda species and may help to improve the selective breeding of WSSV-resistance.

Keywords

References

  1. Immunol Rev. 2004 Apr;198:116-26 [PMID: 15199959]
  2. J Biol Chem. 2006 Dec 15;281(50):38668-74 [PMID: 17040900]
  3. Genet Mol Res. 2016 Nov 21;15(4): [PMID: 27886336]
  4. Gene. 2015 Feb 15;557(1):28-34 [PMID: 25479010]
  5. Acta Virol. 2000 Dec;44(6):371-4 [PMID: 11332281]
  6. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  7. Virology. 2001 Jul 5;285(2):228-33 [PMID: 11437657]
  8. Fish Shellfish Immunol. 2002 May;12(5):421-37 [PMID: 12194453]
  9. Fish Shellfish Immunol. 2009 Apr;26(4):646-50 [PMID: 19071220]
  10. Cell Microbiol. 2003 May;5(5):353-7 [PMID: 12713493]
  11. Int J Food Microbiol. 2016 Dec 5;238:132-138 [PMID: 27620824]
  12. IUBMB Life. 2002 Oct;54(4):177-86 [PMID: 12512856]
  13. Dev Comp Immunol. 2013 Dec;41(4):523-33 [PMID: 23921257]
  14. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  15. Int J Mol Sci. 2015 Jun 29;16(7):14623-39 [PMID: 26132567]
  16. PLoS One. 2012;7(7):e40652 [PMID: 22808222]
  17. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  18. Dis Aquat Organ. 2006 Jul 25;71(2):175-8 [PMID: 16956066]
  19. Fish Shellfish Immunol. 2004 Sep;17(3):265-75 [PMID: 15276606]
  20. Dev Comp Immunol. 1993 Sep-Oct;17(5):399-406 [PMID: 8270092]
  21. Tissue Barriers. 2015 Oct 05;3(4):e1078432 [PMID: 26716073]
  22. Sci Rep. 2016 Jul 14;6:29924 [PMID: 27411341]
  23. Adv Pharmacol. 2006;53:69-115 [PMID: 17239763]
  24. Fish Shellfish Immunol. 2008 Jul;25(1-2):28-39 [PMID: 18474432]
  25. Sci Rep. 2016 Jun 10;6:26780 [PMID: 27283359]
  26. Biochim Biophys Acta. 2013 Oct;1830(10):4719-33 [PMID: 23774590]
  27. PLoS One. 2012;7(2):e30619 [PMID: 22312429]
  28. J Biol Chem. 2005 Sep 16;280(37):32193-9 [PMID: 16027159]
  29. Fish Shellfish Immunol. 2013 Aug;35(2):607-17 [PMID: 23747834]
  30. Prog Mol Biol Transl Sci. 2010;93:1-17 [PMID: 20807638]
  31. Fish Shellfish Immunol. 2009 May;26(5):685-90 [PMID: 19268545]
  32. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  33. J Biochem Mol Biol. 2005 Mar 31;38(2):128-50 [PMID: 15826490]
  34. J Fish Dis. 2008 Jan;31(1):1-18 [PMID: 18086030]
  35. Bioinformatics. 2003 Mar 22;19(5):651-2 [PMID: 12651724]
  36. Curr Opin Immunol. 1998 Feb;10(1):23-8 [PMID: 9523106]
  37. Genome Biol. 2014;15(12):550 [PMID: 25516281]

Word Cloud

Created with Highcharts 10.0.0individualsWSSVresistantinfectiongenessulfateWhitespotsyndromevirusmechanismssusceptibleGSviralGRcontrolgroupGCunigenescrayfishplaycriticalrolesdefenseidentifiedchondroitinresponseProcambarusclarkiionemajorpathogenscausedseveredisruptionaquacultureindustryChinarevealgeneregulatoryunderlyingcomparativetranscriptomeanalysisperformedamongWSSV-infectednon-infectedtotal61349assembledninelibrariesSubsequently5151033exhibitedsignificantdifferentialexpressionsensitivecomparedManydifferentiallyexpressedegPobservedpathogenrecognitionreactionsImportantlyglycosaminoglycanbiosynthesis-chondroitinsulfate/dermatanpathwayupregulatingrelatedsynthesisWSSV-sensitivefunctionalchainscontainingEunitsNumerouskeypathwaysprovidevaluableinsightsregardingantiviraldecapodaspeciesmayhelpimproveselectivebreedingWSSV-resistanceNovelInsightsAntiviralGeneRegulationRedSwampCrayfishInfectedSpotSyndromeVirusRNA-Seqimmunewhite

Similar Articles

Cited By