Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

Ryota Shizu, Jungki Min, Mack Sobhany, Lars C Pedersen, Shingo Mutoh, Masahiko Negishi
Author Information
  1. Ryota Shizu: Department of Pharmacogenetics, Reproductive and Developmental Biology Laboratory.
  2. Jungki Min: Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
  3. Mack Sobhany: Nuclear Integrity, Signal Transduction Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
  4. Lars C Pedersen: Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
  5. Shingo Mutoh: Department of Pharmacogenetics, Reproductive and Developmental Biology Laboratory.
  6. Masahiko Negishi: Department of Pharmacogenetics, Reproductive and Developmental Biology Laboratory. Electronic address: Negishi@niehs.nih.gov.

Abstract

The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

Keywords

References

  1. Biochim Biophys Acta. 2005 Sep 10;1745(2):215-22 [PMID: 16055207]
  2. J Biol Chem. 2011 Oct 14;286(41):35763-9 [PMID: 21873423]
  3. Mol Endocrinol. 1997 Jul;11(8):1114-28 [PMID: 9212059]
  4. Mol Cell Biol. 2001 Feb;21(3):781-93 [PMID: 11154266]
  5. Nature. 1991 Aug 8;352(6335):497-505 [PMID: 1865905]
  6. J Biol Chem. 2009 Aug 21;284(34):22517-24 [PMID: 19561066]
  7. Mol Cell Biol. 1999 Sep;19(9):6318-22 [PMID: 10454578]
  8. Cancer Res. 2004 Oct 15;64(20):7197-200 [PMID: 15492232]
  9. Cell. 2002 Jul 12;110(1):93-105 [PMID: 12151000]
  10. Mol Cell Biol. 2017 May 2;37(10 ): [PMID: 28265001]
  11. J Biol Chem. 2012 Oct 19;287(43):36022-8 [PMID: 22936799]
  12. Mol Cell Endocrinol. 2014 Jan 25;382(1):97-106 [PMID: 24055275]
  13. J Biol Chem. 2009 Dec 11;284(50):34785-92 [PMID: 19858220]
  14. J Steroid Biochem Mol Biol. 2003 Jun;85(2-5):209-19 [PMID: 12943706]
  15. J Cell Sci. 2012 Apr 15;125(Pt 8):1970-9 [PMID: 22328501]
  16. Nat Struct Mol Biol. 2011 May;18(5):564-70 [PMID: 21478865]
  17. Sci Signal. 2013 May 07;6(274):ra31 [PMID: 23652203]
  18. Cancer Cell. 2006 Oct;10(4):309-19 [PMID: 17045208]
  19. Nat Commun. 2017 Feb 06;8:14388 [PMID: 28165461]
  20. Nat Struct Mol Biol. 2014 Mar;21(3):277-81 [PMID: 24561505]
  21. J Mol Biol. 2016 Sep 25;428(19):3831-49 [PMID: 27380738]
  22. Mol Cell Biol. 2001 Apr;21(8):2838-46 [PMID: 11283262]
  23. J Lipid Res. 2009 Mar;50(3):439-45 [PMID: 18941143]
  24. Nature. 2008 Nov 20;456(7220):350-6 [PMID: 19043829]
  25. Mol Pharmacol. 2007 May;71(5):1217-21 [PMID: 17314319]
  26. Nat Commun. 2015 Feb 09;6:5944 [PMID: 25661872]
  27. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18831-6 [PMID: 19850873]
  28. J Biol Chem. 1991 Feb 15;266(5):3107-12 [PMID: 1993683]
  29. EMBO J. 2012 Jan 18;31(2):291-300 [PMID: 22179700]
  30. Mol Cell Biol. 1998 Oct;18(10 ):5652-8 [PMID: 9742082]
  31. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12314-8 [PMID: 8618892]
  32. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15969-74 [PMID: 17043241]
  33. J Biol Chem. 1999 Mar 5;274(10):6043-6 [PMID: 10037683]
  34. J Pharmacol Exp Ther. 2016 May;357(2):367-74 [PMID: 26994072]
  35. J Biol Chem. 2009 Sep 18;284(38):25984-92 [PMID: 19617349]
  36. J Hepatol. 2011 Jul;55(1):154-61 [PMID: 21145854]

Grants

  1. ZIA ES102645/Intramural NIH HHS

MeSH Term

Cell Line
Constitutive Androstane Receptor
DNA-Binding Proteins
Dimerization
Humans
Ligands
Phosphorylation
Protein Binding
Protein Domains
Protein Phosphatase 2
Protein Structure, Tertiary
Receptors, Cytoplasmic and Nuclear
Retinoid X Receptor alpha
Retinoid X Receptors

Chemicals

Constitutive Androstane Receptor
DNA-Binding Proteins
Ligands
NR1I3 protein, human
Receptors, Cytoplasmic and Nuclear
Retinoid X Receptor alpha
Retinoid X Receptors
Protein Phosphatase 2

Word Cloud

Created with Highcharts 10.0.0CARinteractiondomainDBDLBDnuclearreceptorregulateshomodimerheterodimerconversionRXRαphosphorylationDNA-bindingThr-38ligand-bindingproteininactiveactiveintramolecularCAR'salsoDBD-LBDformationallowingphosphorylatedconstitutiveactive/androstaneNR1I3severalliverfunctionsdrugenergymetabolismcellgrowthdeathofteninvolveddevelopmentdiseasesdiabeteshepatocellularcarcinomaundergoeshomodimersheterodimersretinoidXαuncoveredmolecularmechanismenablinghomodimer-heterodimerPhosphomimeticsubstitutionAspincreasedco-immunoprecipitationHuh-7cellsIsothermaltitrationcalorimetryassaysrevealedrecombinantDBD-T38DnonphosphorylatedboundpeptidemaskeddimerinterfacepreventingnoteEGFsignalingweakenedT38DconvertingformDBD-T38D-LBDpreventedformingHoweveropenedsurfacephosphatase2AdephosphorylationdissociatedconcludeenablesadapttransientmonomerconfigurationcanconvertedeitherInteractionactivationdimerizationtranslocationprotein-protein

Similar Articles

Cited By