Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.

Gautham Vivek Sridharan, Bote Gosse Bruinsma, Shyam Sundhar Bale, Anandh Swaminathan, Nima Saeidi, Martin L Yarmush, Korkut Uygun
Author Information
  1. Gautham Vivek Sridharan: Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital & Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA. gvsridharan@gmail.com.
  2. Bote Gosse Bruinsma: Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital & Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA. botebruinsma@gmail.com.
  3. Shyam Sundhar Bale: Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital & Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA. shyam.bale@gmail.com.
  4. Anandh Swaminathan: Department of Control and Dynamic Systems, California Institute of Technology, Pasadena, CA 91125, USA. aswamina@caltech.edu.
  5. Nima Saeidi: Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital & Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA. Nsaeidi@mgh.harvard.edu.
  6. Martin L Yarmush: Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital & Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA. ireis@sbi.org.
  7. Korkut Uygun: Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital & Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA. Uygun.Korkut@mgh.harvard.edu.

Abstract

Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.

Keywords

References

  1. Nucleic Acids Res. 2015 Jul 1;43(W1):W251-7 [PMID: 25897128]
  2. Br J Surg. 2014 Jun;101(7):775-83 [PMID: 24771459]
  3. Am J Transplant. 2014 Jun;14(6):1400-9 [PMID: 24758155]
  4. Brief Bioinform. 2017 Jan;18(1):43-56 [PMID: 26822099]
  5. Nat Rev Genet. 2010 Sep;11(9):647-57 [PMID: 20717155]
  6. BMC Syst Biol. 2013 Oct 23;7:107 [PMID: 24153255]
  7. Sci Rep. 2016 Mar 03;6:22415 [PMID: 26935866]
  8. Bioinformatics. 2010 May 1;26(9):1211-8 [PMID: 20228128]
  9. Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3270-5 [PMID: 21289278]
  10. Mol Biosyst. 2015 Sep;11(9):2406-16 [PMID: 26175011]
  11. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  12. PLoS Comput Biol. 2011 Nov;7(11):e1002262 [PMID: 22102800]
  13. PLoS Comput Biol. 2010 Feb 26;6(2):e1000692 [PMID: 20195502]
  14. PLoS Comput Biol. 2013;9(7):e1003123 [PMID: 23861661]
  15. J Biomed Biotechnol. 2011;2011:null [PMID: 20936179]
  16. PLoS One. 2014 May 09;9(5):e96955 [PMID: 24817014]
  17. Nat Protoc. 2012 Apr 12;7(5):872-81 [PMID: 22498707]
  18. Nat Biotechnol. 2013 May;31(5):419-25 [PMID: 23455439]
  19. Curr Opin Biotechnol. 2013 Dec;24(6):1116-21 [PMID: 23453397]
  20. BMC Syst Biol. 2007 Jun 01;1:23 [PMID: 17543097]
  21. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  22. Bioinformatics. 2014 Jan 1;30(1):61-70 [PMID: 24167155]
  23. BMC Syst Biol. 2013 Jul 23;7:64 [PMID: 23875761]
  24. Immunity. 2015 Mar 17;42(3):419-30 [PMID: 25786174]
  25. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D431-3 [PMID: 14681450]
  26. Nat Med. 2015 Apr;21(4):407-13 [PMID: 25730263]
  27. Liver Transpl. 2012 Jul;18(7):839-49 [PMID: 22407878]
  28. J Mol Biol. 2006 Feb 10;356(1):222-36 [PMID: 16337962]
  29. Nat Commun. 2015 Apr 13;6:6791 [PMID: 25864806]
  30. Chembiochem. 2015 Apr 13;16(6):903-8 [PMID: 25786782]
  31. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 [PMID: 16723398]
  32. BMC Bioinformatics. 2010 Feb 19;11:95 [PMID: 20170493]
  33. Sci Data. 2014 Sep 16;1:140031 [PMID: 25977788]
  34. Sci Rep. 2015 Jul 08;5:11864 [PMID: 26154191]
  35. Am J Physiol Endocrinol Metab. 2015 Jun 1;308(11):E978-89 [PMID: 25852003]
  36. Cryobiology. 2009 Jun;58(3):331-6 [PMID: 19318091]
  37. Technology (Singap World Sci). 2014 Mar;2(1):13 [PMID: 25035864]

Grants

  1. R01 DK096075/NIDDK NIH HHS
  2. F32 DK103500/NIDDK NIH HHS
  3. R21 EB020819/NIBIB NIH HHS
  4. R01 DK084053/NIDDK NIH HHS
  5. R01 EB008678/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0metabolicdataMMAmodulescaptureinterpretphysiologicalpathwaysnetworkinteractionsstudyMetabolomicModularityAnalysisalgorithmidentifyreactionsmetabolitesmodularitycofactorshumanmetabolomicsliverLarge-scale-omicsnowubiquitouslyutilizedglobalresponsesperturbationsbiologicalsystemsimpactdiseasestatescellstissueswholeorgansMetabolomicsparticulardifficultprovidinginsightpredefinedbiochemicalusedanalysisinherentlybiasedfailcomplexspanmultiplecanonicalintroducenov-elapproachcoinedgraph-basedsystematicallyenrichedflaggedstatisticallysignificantdefiningfeatureabilitydeterminehighlightsmediatedproductionconsumptionhubcaseevaluateddynamicsdiscardedliversusingtime-courseexplainobservedchangesleadingrecoverysubnormothermicmachineperfusionSNMPperformedlargescaleliver-specificweightedbasedidentifiedcofactor-mediateddiscoveredtraditionalpathwayanalysesQuantifyHumanLiverPerfusionDynamicsnetworks

Similar Articles

Cited By