Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies.

Ricardo J Ferreira, Cátia A Bonito, M Natália D S Cordeiro, Maria-José U Ferreira, Daniel J V A Dos Santos
Author Information
  1. Ricardo J Ferreira: Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. ORCID
  2. Cátia A Bonito: LAQV@REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
  3. M Natália D S Cordeiro: LAQV@REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal. ncordeir@fc.up.pt.
  4. Maria-José U Ferreira: Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
  5. Daniel J V A Dos Santos: Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. ddsantos@fc.up.pt.

Abstract

Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein (BCRP), based on the recently published crystallographic structure of the ABCG5/G8 heterodimer sterol transporter, a member of the ABCG family involved in cholesterol homeostasis. By means of molecular dynamics simulations and molecular docking, a far-reaching characterization of the ABCG2 homodimer was obtained. The role of important residues and motifs in the structural stability of the transporter was comprehensively studied and was found to be in good agreement with the available experimental data published in literature. Moreover, structural motifs potentially involved in signal transmission were identified, along with two symmetrical drug-binding sites that are herein described for the first time, in a rational attempt to better understand how drug binding and recognition occurs in ABCG2 homodimeric transporters.

References

  1. Int J Cancer. 2015 Mar 1;136(5):E359-86 [PMID: 25220842]
  2. Drug Metab Dispos. 2014 Apr;42(4):575-85 [PMID: 24384916]
  3. J Pharmacol Exp Ther. 2007 Oct;323(1):257-64 [PMID: 17652262]
  4. J Pharmacol Exp Ther. 2007 Jun;321(3):1085-94 [PMID: 17347325]
  5. Structure. 2013 Sep 3;21(9):1563-70 [PMID: 24010715]
  6. Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63 [PMID: 15272157]
  7. Biochim Biophys Acta. 2007 Nov;1768(11):2698-713 [PMID: 17662239]
  8. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  9. Cancer Res. 1998 Dec 1;58(23):5337-9 [PMID: 9850061]
  10. Bioinformatics. 2014 May 15;30(10):1478-80 [PMID: 24451625]
  11. Bioinformatics. 2006 Jan 15;22(2):195-201 [PMID: 16301204]
  12. Biochim Biophys Acta. 2015 Feb;1848(2):477-87 [PMID: 25445676]
  13. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  14. Biochem J. 1986 Nov 15;240(1):289-92 [PMID: 3827849]
  15. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  16. J Chem Theory Comput. 2012 Jun 12;8(6):1853-64 [PMID: 26593820]
  17. J Pharmacol Exp Ther. 2008 Jul;326(1):33-40 [PMID: 18430864]
  18. J Am Chem Soc. 2010 Sep 29;132(38):13251-63 [PMID: 20815391]
  19. Int J Cancer. 2002 Feb 10;97(5):626-30 [PMID: 11807788]
  20. Acta Crystallogr D Biol Crystallogr. 2015 Aug;71(Pt 8):1725-35 [PMID: 26249353]
  21. J Biol Chem. 2005 Nov 4;280(44):36926-34 [PMID: 16107343]
  22. Biophys J. 2000 Dec;79(6):3172-92 [PMID: 11106622]
  23. Phys Chem Chem Phys. 2015 Sep 14;17 (34):22023-34 [PMID: 26235302]
  24. Proteins. 2003 Feb 15;50(3):437-50 [PMID: 12557186]
  25. Biochemistry. 2015 Oct 13;54(40):6195-206 [PMID: 26381710]
  26. Adv Cancer Res. 2015 ;125:97-137 [PMID: 25640268]
  27. Biochimie. 1991 Oct;73(10):1303-10 [PMID: 1664240]
  28. J Comput Aided Mol Des. 2014 Mar;28(3):221-33 [PMID: 24477799]
  29. Eur Biophys J. 2003 Mar;32(1):67-77 [PMID: 12632209]
  30. Cancer Res. 2005 May 15;65(10 ):4320-33 [PMID: 15899824]
  31. Biochemistry. 2005 Aug 16;44(32):10893-904 [PMID: 16086592]
  32. Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 [PMID: 9895674]
  33. J Chem Inf Model. 2014 Jul 28;54(7):1951-62 [PMID: 24850022]
  34. Endocrinology. 1998 Dec;139(12 ):4991-7 [PMID: 9832438]
  35. J Chem Theory Comput. 2009 Mar 10;5(3):615-26 [PMID: 26610227]
  36. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  37. Biochim Biophys Acta. 2002 Sep 20;1565(1):6-16 [PMID: 12225847]
  38. Nat Protoc. 2009;4(1):1-13 [PMID: 19131951]
  39. J Biol Chem. 2003 Nov 21;278(47):47156-65 [PMID: 12960149]
  40. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8 [PMID: 24782522]
  41. Proteins. 1992 Apr;12(4):345-64 [PMID: 1579569]
  42. Eur Biophys J. 2011 Jul;40(7):843-56 [PMID: 21533652]
  43. Protein Sci. 1993 Sep;2(9):1511-9 [PMID: 8401235]
  44. Protein Sci. 2006 Jul;15(7):1597-607 [PMID: 16815914]
  45. J Mol Graph Model. 1999 Feb;17(1):57-61 [PMID: 10660911]
  46. Nature. 2016 May 04;533(7604):561-4 [PMID: 27144356]
  47. Mol Pharmacol. 2013 Nov;84(5):655-69 [PMID: 24021215]
  48. J Biol Chem. 2007 Sep 21;282(38):27841-6 [PMID: 17686774]
  49. Proteins. 2013 Sep;81(9):1653-68 [PMID: 23670856]
  50. Cell Mol Life Sci. 2006 Aug;63(16):1912-22 [PMID: 16847575]
  51. J Chem Theory Comput. 2012 Oct 9;8(10):3964-76 [PMID: 26593033]
  52. Curr Drug Metab. 2010 Sep;11(7):603-17 [PMID: 20812902]
  53. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83 [PMID: 17452350]
  54. Cell. 2017 Mar 9;168(6):1075-1085.e9 [PMID: 28238471]
  55. J Chem Theory Comput. 2012 Oct 9;8(10):3705-23 [PMID: 26593015]
  56. Biophys J. 1995 Oct;69(4):1230-45 [PMID: 8534794]
  57. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15665-70 [PMID: 9861027]
  58. J Biol Chem. 2015 Dec 4;290(49):29389-401 [PMID: 26507655]
  59. Eur J Med Chem. 2015 Aug 28;101:560-72 [PMID: 26197160]
  60. Br J Pharmacol. 2006 Nov;149(5):506-15 [PMID: 16981002]
  61. J Struct Biol. 2008 Apr;162(1):63-74 [PMID: 18249138]
  62. Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6 [PMID: 21890895]
  63. J Am Chem Soc. 2012 Mar 21;134(11):5351-61 [PMID: 22372465]
  64. Bioinformatics. 2000 Sep;16(9):815-24 [PMID: 11108704]
  65. J Chem Theory Comput. 2010 Jan 12;6(1):325-36 [PMID: 26614341]
  66. J Biol Chem. 2004 May 7;279(19):19781-9 [PMID: 15001581]
  67. Biochemistry. 1999 May 25;38(21):6887-96 [PMID: 10346910]
  68. Biochemistry. 2015 Jul 21;54(28):4374-90 [PMID: 26125482]
  69. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  70. Bioinformatics. 2011 Jun 1;27(11):1575-7 [PMID: 21471012]
  71. Int J Biochem Mol Biol. 2012;3(1):1-27 [PMID: 22509477]
  72. Future Med Chem. 2015;7(7):929-46 [PMID: 26061109]
  73. Biochim Biophys Acta. 2014 Nov;1838(11):2882-98 [PMID: 25068895]
  74. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  75. Proteins. 1995 Dec;23(4):566-79 [PMID: 8749853]
  76. J Comput Chem. 2010 Aug;31(11):2169-74 [PMID: 20336801]
  77. J Mol Graph Model. 2013 Nov;46:10-21 [PMID: 24095875]
  78. J Chem Theory Comput. 2011 Dec 13;7(12):4026-37 [PMID: 26598349]
  79. PLoS One. 2016 Oct 14;11(10 ):e0164426 [PMID: 27741279]
  80. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  81. J Chem Inf Model. 2013 Jul 22;53(7):1747-60 [PMID: 23802684]
  82. Cell Mol Life Sci. 2016 May;73(9):1927-37 [PMID: 26708291]
  83. J Biomol NMR. 1996 Dec;8(4):477-86 [PMID: 9008363]
  84. J Biol Chem. 2008 Sep 19;283(38):26059-70 [PMID: 18644784]
  85. Biochem Soc Trans. 2015 Oct;43(5):952-8 [PMID: 26517909]
  86. FEBS Lett. 2006 Sep 4;580(20):4953-8 [PMID: 16930597]
  87. Biosci Rep. 2015 Jul 17;35(4):null [PMID: 26294421]
  88. Biochemistry. 1974 Jan 15;13(2):222-45 [PMID: 4358940]
  89. PLoS Comput Biol. 2011 Jun;7(6):e1002083 [PMID: 21731480]
  90. Bioinformatics. 2006 Mar 1;22(5):623-5 [PMID: 16397007]
  91. Biochim Biophys Acta. 1976 Nov 11;455(1):152-62 [PMID: 990323]
  92. Science. 1992 Dec 4;258(5088):1650-4 [PMID: 1360704]
  93. Arch Toxicol. 2014 Jun;88(6):1205-48 [PMID: 24777822]
  94. Bioinformatics. 2011 Feb 1;27(3):343-50 [PMID: 21134891]
  95. J Comput Chem. 2010 Apr 30;31(6):1117-25 [PMID: 19827145]
  96. J Comput Aided Mol Des. 2000 May;14(4):383-401 [PMID: 10815774]
  97. Biochim Biophys Acta. 2016 Jan;1863(1):19-29 [PMID: 26453803]
  98. J Chem Theory Comput. 2008 Jan;4(1):116-22 [PMID: 26619985]
  99. Front Oncol. 2014 Mar 03;4:41 [PMID: 24624364]
  100. Biochem J. 2013 Mar 1;450(2):387-95 [PMID: 23205634]
  101. Chem Rev. 2010 Mar 10;110(3):1463-97 [PMID: 19785456]
  102. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267-87 [PMID: 3904832]
  103. Science. 2009 Mar 27;323(5922):1718-22 [PMID: 19325113]
  104. Protein Sci. 2002 Nov;11(11):2714-26 [PMID: 12381853]
  105. Biochemistry. 1988 Oct 18;27(21):8261-9 [PMID: 3233209]
  106. Biochem J. 2003 Aug 1;373(Pt 3):767-74 [PMID: 12741957]
  107. Cancer Res. 1999 Jan 1;59(1):8-13 [PMID: 9892175]
  108. Cancer Sci. 2005 Dec;96(12 ):866-72 [PMID: 16367905]
  109. Cancer Res. 2007 May 1;67(9):4373-81 [PMID: 17483351]
  110. Nature. 2017 Jun 22;546(7659):504-509 [PMID: 28554189]
  111. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W510-4 [PMID: 19429685]
  112. J Chem Theory Comput. 2008 Mar;4(3):435-47 [PMID: 26620784]

MeSH Term

ATP Binding Cassette Transporter, Subfamily G, Member 2
Binding Sites
Humans
Molecular Docking Simulation
Molecular Dynamics Simulation
Neoplasm Proteins
Protein Interaction Domains and Motifs
Protein Structure, Quaternary
Structure-Activity Relationship

Chemicals

ABCG2 protein, human
ATP Binding Cassette Transporter, Subfamily G, Member 2
Neoplasm Proteins

Word Cloud

Created with Highcharts 10.0.0moleculartransportersinvolvedABCG2cancerpublishedtransporterdynamicssimulationsdockingmotifsstructuralEffluxpumpsATP-bindingcassettesuperfamilyABCfrequentlymultidrug-resistanceMDRphenomenoncellsHereindescribenewatomisticmodelMDR-relatedeffluxpumpalsonamedbreastresistanceproteinBCRPbasedrecentlycrystallographicstructureABCG5/G8heterodimersterolmemberABCGfamilycholesterolhomeostasismeansfar-reachingcharacterizationhomodimerobtainedroleimportantresiduesstabilitycomprehensivelystudiedfoundgoodagreementavailableexperimentaldataliteratureMoreoverpotentiallysignaltransmissionidentifiedalongtwosymmetricaldrug-bindingsiteshereindescribedfirsttimerationalattemptbetterunderstanddrugbindingrecognitionoccurshomodimericStructure-functionrelationshipsABCG2:insightsstudies

Similar Articles

Cited By