Association of Omics Features with Histopathology Patterns in Lung Adenocarcinoma.

Kun-Hsing Yu, Gerald J Berry, Daniel L Rubin, Christopher Ré, Russ B Altman, Michael Snyder
Author Information
  1. Kun-Hsing Yu: Biomedical Informatics Program, Stanford University, Stanford, CA 94305-5479, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  2. Gerald J Berry: Department of Pathology, Stanford University, Stanford, CA 94305, USA.
  3. Daniel L Rubin: Biomedical Informatics Program, Stanford University, Stanford, CA 94305-5479, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Radiology, Stanford University, Stanford, CA 94305-5105, USA; Department of Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA 94305-5479, USA.
  4. Christopher Ré: Department of Computer Science, Stanford University, Stanford, CA 94305-9025, USA.
  5. Russ B Altman: Biomedical Informatics Program, Stanford University, Stanford, CA 94305-5479, USA; Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA; Department of Computer Science, Stanford University, Stanford, CA 94305-9025, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305-4125, USA.
  6. Michael Snyder: Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA. Electronic address: mpsnyder@stanford.edu.

Abstract

Adenocarcinoma accounts for more than 40% of lung malignancy, and microscopic pathology evaluation is indispensable for its diagnosis. However, how histopathology findings relate to molecular abnormalities remains largely unknown. Here, we obtained H&E-stained whole-slide histopathology images, pathology reports, RNA sequencing, and proteomics data of 538 lung adenocarcinoma patients from The Cancer Genome Atlas and used these to identify molecular pathways associated with histopathology patterns. We report cell-cycle regulation and nucleotide binding pathways underpinning tumor cell dedifferentiation, and we predicted histology grade using transcriptomics and proteomics signatures (area under curve >0.80). We built an integrative histopathology-transcriptomics model to generate better prognostic predictions for stage I patients (p = 0.0182 ± 0.0021) compared with gene expression or histopathology studies alone, and the results were replicated in an independent cohort (p = 0.0220 ± 0.0070). These results motivate the integration of histopathology and omics data to investigate molecular mechanisms of pathology findings and enhance clinical prognostic prediction.

Keywords

References

  1. Sci Transl Med. 2011 Nov 9;3(108):108ra113 [PMID: 22072638]
  2. Mol Cell Proteomics. 2016 Aug;15(8):2525-36 [PMID: 27099341]
  3. Mod Pathol. 2012 Aug;25(8):1117-27 [PMID: 22499226]
  4. Sci Transl Med. 2012 Oct 24;4(157):157ra143 [PMID: 23100629]
  5. F1000 Med Rep. 2012;4:14 [PMID: 22802873]
  6. Bioinformatics. 2017 Sep 12;: [PMID: 28968749]
  7. J Thorac Dis. 2014 Oct;6(Suppl 5):S502-25 [PMID: 25349702]
  8. J Natl Cancer Inst. 2003 Jul 2;95(13):961-70 [PMID: 12837832]
  9. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  10. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  11. Nat Commun. 2016 Aug 16;7:12474 [PMID: 27527408]
  12. J Clin Invest. 2007 Nov;117(11):3436-44 [PMID: 17948124]
  13. J Clin Oncol. 2012 May 1;30(13):1438-46 [PMID: 22393100]
  14. Oncotarget. 2016 Dec 13;7(50):81981-81994 [PMID: 27626181]
  15. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 [PMID: 25352553]
  16. J Proteome Res. 2016 Aug 5;15(8):2455-65 [PMID: 27312948]
  17. Genome Biol. 2006;7(10):R100 [PMID: 17076895]
  18. BMC Med Genomics. 2014 Jun 04;7:32 [PMID: 24894543]
  19. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  20. Mol Clin Oncol. 2016 Dec;5(6):705-713 [PMID: 28101350]
  21. Br J Cancer. 2008 Jul 22;99(2):245-52 [PMID: 18594528]
  22. CSH Protoc. 2008 May 01;2008:pdb.prot4986 [PMID: 21356829]
  23. IEEE Trans Neural Netw. 1997;8(1):98-113 [PMID: 18255614]
  24. Am Fam Physician. 2007 Jan 1;75(1):56-63 [PMID: 17225705]
  25. J Thorac Dis. 2014 Oct;6(Suppl 5):S537-46 [PMID: 25349704]
  26. Cancer. 2010 Feb 1;116(3):659-69 [PMID: 20014400]
  27. Cell. 2011 Nov 23;147(5):973-8 [PMID: 22118455]
  28. PLoS Med. 2006 Jul;3(7):e232 [PMID: 16800721]
  29. Cancer Epidemiol Biomarkers Prev. 2016 Nov;25(11):1511-1516 [PMID: 27496093]
  30. Nature. 2014 Jul 31;511(7511):543-50 [PMID: 25079552]
  31. Sci Transl Med. 2013 Oct 30;5(209):209ra153 [PMID: 24174329]
  32. Stat Med. 1997 Feb 28;16(4):385-95 [PMID: 9044528]
  33. J Thorac Oncol. 2014 Feb;9(2):154-62 [PMID: 24419411]
  34. Cancer. 2005 Nov 15;104(10):2205-13 [PMID: 16216029]
  35. Chest. 2003 Jun;123(6):1858-67 [PMID: 12796161]
  36. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 [PMID: 23203871]
  37. Cancer Res. 1995 Jan 1;55(1):51-6 [PMID: 7805040]
  38. CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29 [PMID: 24399786]
  39. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 [PMID: 21296855]
  40. J Thorac Oncol. 2011 Feb;6(2):244-85 [PMID: 21252716]
  41. PLoS One. 2012;7(5):e36530 [PMID: 22590557]
  42. Cell. 2016 Jul 28;166(3):755-765 [PMID: 27372738]
  43. Nat Med. 2011 Mar;17(3):297-303 [PMID: 21383744]
  44. J Thorac Dis. 2014 Oct;6(Suppl 5):S589-96 [PMID: 25349710]
  45. J Thorac Dis. 2014 Oct;6(Suppl 5):S526-36 [PMID: 25349703]
  46. Am J Clin Pathol. 2010 Jun;133(6):832-4 [PMID: 20472839]
  47. J Stat Softw. 2011 Mar;39(5):1-13 [PMID: 27065756]

Grants

  1. /Howard Hughes Medical Institute
  2. P50 HG007735/NHGRI NIH HHS
  3. U24 CA160036/NCI NIH HHS
  4. U01 CA142555/NCI NIH HHS
  5. U01 CA190214/NCI NIH HHS
  6. R35 GM142879/NIGMS NIH HHS

MeSH Term

Adenocarcinoma
Aged
Cell Cycle
Cell Dedifferentiation
Decision Making, Computer-Assisted
Female
Humans
Lung
Lung Neoplasms
Machine Learning
Male
Middle Aged
Models, Biological
Neoplasm Staging
Precision Medicine
Prognosis
Proteomics
Transcriptome

Word Cloud

Created with Highcharts 10.0.0histopathologypathology0cancerlungmolecularproteomicsAdenocarcinomafindingsdataadenocarcinomapatientspathwaystranscriptomicsprognosticp =resultsmedicineaccounts40%malignancymicroscopicevaluationindispensablediagnosisHoweverrelateabnormalitiesremainslargelyunknownobtainedH&E-stainedwhole-slideimagesreportsRNAsequencing538CancerGenomeAtlasusedidentifyassociatedpatternsreportcell-cycleregulationnucleotidebindingunderpinningtumorcelldedifferentiationpredictedhistologygradeusingsignaturesareacurve>080builtintegrativehistopathology-transcriptomicsmodelgeneratebetterpredictionsstage0182 ±0021comparedgeneexpressionstudiesalonereplicatedindependentcohort0220 ±0070motivateintegrationomicsinvestigatemechanismsenhanceclinicalpredictionAssociationOmicsFeaturesHistopathologyPatternsLunggenomicsimagingmachinelearningprecisionpredictivequantitative

Similar Articles

Cited By