Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, (Diptera: Anthomyiidae).

Shuang Ren, You-Jin Hao, Bin Chen, You-Ping Yin
Author Information
  1. Shuang Ren: Key Lab of Genetic Function and Regulation in Chongqing, School of Life Sciences, Chongqing University, 401331, China.
  2. You-Jin Hao: Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, 401331, China.
  3. Bin Chen: Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, 401331, China.
  4. You-Ping Yin: Key Lab of Genetic Function and Regulation in Chongqing, School of Life Sciences, Chongqing University, 401331, China yinyouping@cqu.edu.cn.

Abstract

The onion maggot, , is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction.

Keywords

References

  1. Cell. 2002 Mar 22;108(6):865-76 [PMID: 11955438]
  2. Zoolog Sci. 2008 Mar;25(3):321-33 [PMID: 18393570]
  3. J Biochem Mol Biol. 2006 Nov 30;39(6):749-58 [PMID: 17129412]
  4. BMC Ecol. 2010 Feb 01;10:3 [PMID: 20122138]
  5. Trends Endocrinol Metab. 2007 Jan-Feb;18(1):4-11 [PMID: 17140805]
  6. PLoS One. 2008 Mar 12;3(3):e1761 [PMID: 18335037]
  7. G3 (Bethesda). 2014 Mar 10;4(5):851-9 [PMID: 24615268]
  8. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  9. J Insect Physiol. 2003 Feb;49(2):161-9 [PMID: 12770009]
  10. J Insect Physiol. 2010 Jun;56(6):603-9 [PMID: 20026067]
  11. J Insect Physiol. 2010 Sep;56(9):1147-54 [PMID: 20230829]
  12. Physiol Entomol. 2013 Jun;38(2):173-181 [PMID: 23833391]
  13. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  14. J Insect Physiol. 2016 Mar;86:54-9 [PMID: 26776097]
  15. Cell Mol Life Sci. 2010 Jul;67(14):2405-24 [PMID: 20213274]
  16. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  17. Development. 2008 Aug;135(15):2583-92 [PMID: 18599512]
  18. J Insect Physiol. 2007 Mar;53(3):235-45 [PMID: 17098250]
  19. Development. 2004 Aug;131(16):3839-47 [PMID: 15253935]
  20. BMC Genomics. 2009 Sep 29;10:456 [PMID: 19788735]
  21. Insect Biochem Mol Biol. 2013 Oct;43(10):982-9 [PMID: 23933212]
  22. Funct Integr Genomics. 2015 Jul;15(4):439-47 [PMID: 25634120]
  23. Fish Shellfish Immunol. 2013 May;34(5):1178-87 [PMID: 23428517]
  24. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  25. Front Mol Neurosci. 2017 Mar 07;10 :57 [PMID: 28326013]
  26. Insect Mol Biol. 2009 Nov;18(6):759-68 [PMID: 19849724]
  27. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14687-92 [PMID: 22912402]
  28. PLoS One. 2016 Apr 29;11(4):e0154892 [PMID: 27128578]
  29. Development. 2004 Apr;131(8):1765-76 [PMID: 15084461]
  30. Neuron. 2006 Jan 19;49(2):229-41 [PMID: 16423697]
  31. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6777-81 [PMID: 18448677]
  32. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  33. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15912-7 [PMID: 16247003]
  34. J Insect Physiol. 2011 Jul;57(7):935-8 [PMID: 21550348]
  35. J Insect Physiol. 2007 Apr;53(4):385-91 [PMID: 17349654]
  36. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14909-14 [PMID: 20668242]
  37. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  38. Annu Rev Entomol. 2015 Jan 7;60:59-75 [PMID: 25341107]
  39. J Insect Physiol. 2002 Aug;48(8):803-816 [PMID: 12770058]
  40. Gene. 2001 Oct 31;278(1-2):177-84 [PMID: 11707335]
  41. Chronobiol Int. 2012 Apr;29(3):227-51 [PMID: 22390237]
  42. Insect Sci. 2016 Jun;23 (3):438-51 [PMID: 26826557]
  43. J Exp Biol. 2009 Jul;212(Pt 13):2075-84 [PMID: 19525434]
  44. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11130-7 [PMID: 17522254]
  45. Int J Biol Sci. 2014 Sep 12;10(9):1051-63 [PMID: 25285037]
  46. BMC Genomics. 2015 Dec 21;16:1086 [PMID: 26689283]
  47. Curr Biol. 2003 Aug 5;13(15):1348-54 [PMID: 12906797]
  48. Nat Protoc. 2015 Jun;10(6):823-44 [PMID: 25950236]
  49. PLoS Negl Trop Dis. 2015 Apr 21;9(4):e0003724 [PMID: 25897664]
  50. Annu Rev Genet. 2006;40:409-48 [PMID: 17094740]
  51. PLoS One. 2009 Jul 28;4(7):e6394 [PMID: 19636376]
  52. J Exp Zool. 1996 Mar 1;274(4):207-20 [PMID: 8919747]
  53. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):E421-30 [PMID: 21715657]
  54. Genetics. 1992 May;131(1):99-112 [PMID: 1592246]
  55. Insect Mol Biol. 2009 Jun;18(3):325-32 [PMID: 19523064]
  56. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5616-20 [PMID: 9576932]
  57. BMC Biol. 2010 Sep 03;8:116 [PMID: 20815865]
  58. Trends Genet. 2009 May;25(5):217-25 [PMID: 19375812]
  59. J Med Entomol. 2015 Mar;52(2):131-7 [PMID: 26336296]
  60. BMC Genomics. 2011 Dec 20;12:619 [PMID: 22185595]
  61. Neuron. 2001 Nov 20;32(4):657-71 [PMID: 11719206]
  62. Front Physiol. 2013 Jul 22;4:189 [PMID: 23885240]
  63. Bioinformatics. 2011 Aug 1;27(15):2159-60 [PMID: 21697132]
  64. PLoS One. 2011;6(12):e27493 [PMID: 22164210]
  65. J Exp Biol. 2015 Feb 1;218(Pt 3):412-22 [PMID: 25653422]
  66. Insect Biochem Mol Biol. 2009 Dec;39(12):875-83 [PMID: 19879357]
  67. J Insect Physiol. 2000 Feb;46(2):161-167 [PMID: 12770248]

MeSH Term

Adaptation, Physiological
Animals
CLOCK Proteins
Carbohydrate Metabolism
Circadian Clocks
Diapause, Insect
Diptera
Energy Metabolism
Gene Expression Regulation, Developmental
Gene Ontology
Genome, Insect
High-Throughput Nucleotide Sequencing
Larva
Lipid Metabolism
Molecular Sequence Annotation
Onions
Seasons
Transcriptome

Chemicals

CLOCK Proteins

Word Cloud

Created with Highcharts 10.0.0inductionSDdiapausegenescircadianclocktranscriptomesensitiveenvironmentalsummermolecularregulationsequencingdifferentiallyrelatedlipidcarbohydrateenergymetabolismadaptionperiodincludingpathwaysinsectonionmaggotworldwidesubterraneanpestcanenterwinterseasonsontogenesistransitionremainslargelyunknownusedhigh-throughputRNAidentifycandidateprocesseslinkedcomparingdifferenceslarvaldevelopmentalstagenondiapauseNDNinepairwisecomparisonsperformedsignificantlyregulatedtranscriptsidentifiedSeveralfunctionaltermsimmuneresponseagingenrichedsubsetexpressedconditionsmuchvariationND-SD-destinedlarvaeexpressionvariationsprobablyresulteddeeprestructuringmetabolicPotentialregulatoryelementsCollectivelyresultssuggestonekeydriversintegratingsignalsanalysisprovidesinsightfundamentalroleimportantmodelspeciescontributesin-depthelucidationmechanismGlobalTranscriptomeSequencingRevealsMolecularProfilesSummerDiapauseInductionStageOnionMaggotDiptera:AnthomyiidaeDeliaantiqua

Similar Articles

Cited By