Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation.

Katja R Kasimatis, Patrick C Phillips
Author Information
  1. Katja R Kasimatis: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403 kkasimat@uoregon.edu.
  2. Patrick C Phillips: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403. ORCID

Abstract

Reproductive proteins are often observed to be the most rapidly evolving elements within eukaryotic genomes. The major sperm protein (MSP) is unique to the phylum Nematoda and is required for proper sperm locomotion and fertilization. Here, we annotate the MSP gene family and analyze their molecular evolution in 10 representative species across Nematoda. We show that MSPs are hyper-conserved across the phylum, having maintained an amino acid sequence identity of 83.5-97.7% for over 500 million years. This extremely slow rate of evolution makes MSPs some of the most highly conserved genes yet identified. However, at the gene family level, we show hyper-variability in both gene copy number and genomic position within species, suggesting rapid, lineage-specific gene family evolution. Additionally, we find evidence that extensive gene conversion contributes to the maintenance of sequence identity within chromosome-level clusters of MSP genes. Thus, while not conforming to the standard expectation for the evolution of reproductive proteins, our analysis of the molecular evolution of the MSP gene family is nonetheless consistent with the widely repeatable observation that reproductive proteins evolve rapidly, in this case in terms of the genomic properties of gene structure, copy number, and genomic organization. This unusual evolutionary pattern is likely generated by strong pleiotropic constraints acting on these genes at the sequence level, balanced against expansion at the level of the whole gene family.

Keywords

References

  1. Genetics. 2000 Dec;156(4):1879-88 [PMID: 11102381]
  2. Science. 2001 Mar 16;291(5511):2144-7 [PMID: 11251118]
  3. Hum Mol Genet. 2001 Jun 15;10(13):1335-46 [PMID: 11440986]
  4. J Cell Sci. 2002 Jan 15;115(Pt 2):367-84 [PMID: 11839788]
  5. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  6. J Mol Biol. 2002 May 31;319(2):491-9 [PMID: 12051923]
  7. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  8. Nat Struct Biol. 2003 Nov;10(11):882-91 [PMID: 14583738]
  9. J Cell Sci. 1992 Apr;101 ( Pt 4):847-57 [PMID: 1527183]
  10. Dev Biol. 2005 Jan 1;277(1):200-21 [PMID: 15572150]
  11. Trends Parasitol. 2005 May;21(5):224-31 [PMID: 15837611]
  12. Genetics. 2005 Nov;171(3):1083-101 [PMID: 16085702]
  13. Reproduction. 2006 Jan;131(1):11-22 [PMID: 16388004]
  14. Syst Biol. 2006 Aug;55(4):539-52 [PMID: 16785212]
  15. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  16. Nat Genet. 2007 Oct;39(10):1256-60 [PMID: 17828263]
  17. Nat Genet. 2007 Dec;39(12):1461-8 [PMID: 17987029]
  18. Nature. 2007 Nov 8;450(7167):203-18 [PMID: 17994087]
  19. J Cell Biochem. 2008 May 15;104(2):477-87 [PMID: 18022815]
  20. WormBook. 2005 Aug 11;:1-11 [PMID: 18050394]
  21. Am J Hum Genet. 2008 Sep;83(3):337-46 [PMID: 18760392]
  22. Bioessays. 2009 Jan;31(1):29-39 [PMID: 19153999]
  23. Genome Res. 2009 May;19(5):886-96 [PMID: 19411605]
  24. Nature. 2010 Apr 1;464(7289):704-12 [PMID: 19812545]
  25. Nat Rev Genet. 2010 Feb;11(2):97-108 [PMID: 20051986]
  26. Mol Biol Evol. 2010 Sep;27(9):2000-13 [PMID: 20375075]
  27. Proc Biol Sci. 2010 Nov 7;277(1698):3213-21 [PMID: 20591863]
  28. Dev Biol. 1981 Jun;84(2):299-312 [PMID: 20737868]
  29. BMC Genomics. 2011 Jun 10;12:306 [PMID: 21663664]
  30. Cold Spring Harb Perspect Biol. 2011 Nov 01;3(11):a002931 [PMID: 21730046]
  31. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  32. Mol Biol Evol. 2013 Apr;30(4):964-76 [PMID: 23329688]
  33. PLoS One. 2014 Apr 11;9(4):e94723 [PMID: 24727800]
  34. Parasitology. 2015 Feb;142 Suppl 1:S26-39 [PMID: 24963797]
  35. Evolution. 2014 Oct;68(10):3008-19 [PMID: 24975874]
  36. J Mol Evol. 2015 Jan;80(1):18-36 [PMID: 25323991]
  37. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4393-8 [PMID: 25831521]
  38. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  39. Cold Spring Harb Perspect Biol. 2015 Jun 01;7(6):null [PMID: 26032715]
  40. J Proteomics. 2016 Mar 1;135:12-25 [PMID: 26074353]
  41. PLoS One. 2015 Jun 30;10(6):e0131136 [PMID: 26125626]
  42. Cell Tissue Res. 2016 Jan;363(1):267-78 [PMID: 26254045]
  43. BMC Evol Biol. 2015 Sep 15;15:185 [PMID: 26370559]
  44. J Proteomics. 2016 Mar 1;135:26-37 [PMID: 26476146]
  45. Genome Biol Evol. 2015 Nov 11;7(12):3249-58 [PMID: 26560339]
  46. BMC Genomics. 2015 Dec 09;16:1044 [PMID: 26645535]
  47. Evolution. 2016 Feb;70(2):502-11 [PMID: 26748568]
  48. Nat Genet. 2016 Mar;48(3):299-307 [PMID: 26829753]
  49. Sci Rep. 2016 Aug 26;6:32175 [PMID: 27562645]
  50. Evolution. 2016 Nov;70(11):2485-2503 [PMID: 27565121]
  51. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13815-13820 [PMID: 27849592]
  52. Mol Biochem Parasitol. 2017 Jul;215:2-10 [PMID: 27899279]
  53. Genome Biol Evol. 2017 Mar 1;9(3):790-801 [PMID: 28338804]
  54. Nucleic Acids Res. 2018 Jan 4;46(D1):D869-D874 [PMID: 29069413]
  55. Evol Lett. 2018 Jul 16;2(4):427-441 [PMID: 30283693]
  56. J Mol Evol. 1987;25(1):58-64 [PMID: 3041010]
  57. J Mol Biol. 1983 Nov 25;171(1):1-29 [PMID: 6315956]
  58. J Cell Biol. 1982 Jan;92(1):121-31 [PMID: 7199049]
  59. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  60. Mol Phylogenet Evol. 1993 Dec;2(4):351-60 [PMID: 8049784]
  61. Cell. 1996 Jan 12;84(1):1-4 [PMID: 8548813]
  62. Nucleic Acids Res. 1998 Jun 15;26(12):2837-42 [PMID: 9611225]
  63. J Mol Biol. 1998 Jun 12;279(3):605-19 [PMID: 9641981]
  64. J Mol Biol. 1998 Dec 18;284(5):1611-24 [PMID: 9878374]

Grants

  1. R01 GM102511/NIGMS NIH HHS
  2. T32 GM007413/NIGMS NIH HHS

MeSH Term

Amino Acid Sequence
Animals
Caenorhabditis elegans
Conserved Sequence
Evolution, Molecular
Gene Dosage
Gene Expression
Genome, Helminth
Helminth Proteins
Male
Phylogeny
Reproduction
Sequence Alignment
Sequence Homology, Amino Acid
Spermatozoa

Chemicals

Helminth Proteins
major sperm protein, nematode

Word Cloud

Created with Highcharts 10.0.0geneevolutionfamilyproteinsMSPwithinmolecularsequencegeneslevelgenomicreproductiverapidlyspermphylumNematodaspeciesacrossshowMSPsidentitycopynumberReproductiveoftenobservedevolvingelementseukaryoticgenomesmajorproteinuniquerequiredproperlocomotionfertilizationannotateanalyze10representativehyper-conservedmaintainedaminoacid835-977%500millionyearsextremelyslowratemakeshighlyconservedyetidentifiedHoweverhyper-variabilitypositionsuggestingrapidlineage-specificAdditionallyfindevidenceextensiveconversioncontributesmaintenancechromosome-levelclustersThusconformingstandardexpectationanalysisnonethelessconsistentwidelyrepeatableobservationevolvecasetermspropertiesstructureorganizationunusualevolutionarypatternlikelygeneratedstrongpleiotropicconstraintsactingbalancedexpansionwholeRapidGeneFamilyEvolutionNematodeSpermProteinDespiteSequenceHyper-conservationnematodes

Similar Articles

Cited By