Osmosensing by the bacterial PhoQ/PhoP two-component system.

Jing Yuan, Fan Jin, Timo Glatter, Victor Sourjik
Author Information
  1. Jing Yuan: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; jing.yuan@synmikro.mpi-marburg.mpg.de victor.sourjik@synmikro.mpi-marburg.mpg.de.
  2. Fan Jin: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  3. Timo Glatter: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  4. Victor Sourjik: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; jing.yuan@synmikro.mpi-marburg.mpg.de victor.sourjik@synmikro.mpi-marburg.mpg.de.

Abstract

The PhoQ/PhoP two-component system plays an essential role in the response of enterobacteria to the environment of their mammalian hosts. It is known to sense several stimuli that are potentially associated with the host, including extracellular magnesium limitation, low pH, and the presence of cationic antimicrobial peptides. Here, we show that the PhoQ/PhoP two-component systems of and can also perceive an osmotic upshift, another key stimulus to which bacteria become exposed within the host. In contrast to most previously established stimuli of PhoQ, the detection of osmotic upshift does not require its periplasmic sensor domain. Instead, we show that the activity of PhoQ is affected by the length of the transmembrane (TM) helix as well as by membrane lateral pressure. We therefore propose that osmosensing relies on a conformational change within the TM domain of PhoQ induced by a perturbation in cell membrane thickness and lateral pressure under hyperosmotic conditions. Furthermore, the response mediated by the PhoQ/PhoP two-component system was found to improve bacterial growth recovery under hyperosmotic stress, partly through stabilization of the sigma factor RpoS. Our findings directly link the PhoQ/PhoP two-component system to bacterial osmosensing, suggesting that this system can mediate a concerted response to most of the established host-related cues.

Keywords

References

  1. Int J Food Microbiol. 2012 Jan 16;152(3):75-81 [PMID: 21570144]
  2. Trends Biochem Sci. 2001 Jun;26(6):369-76 [PMID: 11406410]
  3. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  4. Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3140-5 [PMID: 24516160]
  5. Cell. 2005 Aug 12;122(3):461-72 [PMID: 16096064]
  6. J Bacteriol. 2004 May;186(10):3006-14 [PMID: 15126461]
  7. J Biol Chem. 1996 Oct 25;271(43):26630-6 [PMID: 8900137]
  8. Biochim Biophys Acta. 2014 Aug;1843(8):1529-41 [PMID: 24184210]
  9. J Bacteriol. 2012 Mar;194(6):1457-63 [PMID: 22267510]
  10. Microbiol Mol Biol Rev. 1999 Mar;63(1):230-62 [PMID: 10066837]
  11. J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
  12. Curr Opin Microbiol. 2000 Apr;3(2):165-70 [PMID: 10745001]
  13. Elife. 2015 May 23;4:e06792 [PMID: 26002083]
  14. Am J Physiol. 1983 Aug;245(2):R181-9 [PMID: 6881377]
  15. BMC Microbiol. 2008 Sep 08;8:142 [PMID: 18778463]
  16. Acta Physiol Scand. 1991 Nov;143(3):271-7 [PMID: 1772035]
  17. Mol Microbiol. 1996 Sep;21(5):887-93 [PMID: 8885260]
  18. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8141-6 [PMID: 20404199]
  19. FEBS Lett. 1997 Jul 21;412(1):15-20 [PMID: 9257681]
  20. Cell. 1996 Jan 12;84(1):165-74 [PMID: 8548821]
  21. Annu Rev Biochem. 2000;69:183-215 [PMID: 10966457]
  22. Mol Microbiol. 2014 Jan;91(1):135-44 [PMID: 24256574]
  23. J Microbiol. 2005 Feb;43 Spec No:85-92 [PMID: 15765061]
  24. Res Microbiol. 2009 Nov;160(9):667-76 [PMID: 19765651]
  25. J Bacteriol. 1999 Sep;181(17):5516-20 [PMID: 10464230]
  26. J Biol Chem. 1997 Jan 17;272(3):1440-3 [PMID: 8999810]
  27. Cell Host Microbe. 2016 Aug 10;20(2):133-43 [PMID: 27512901]
  28. Biochim Biophys Acta. 1983 Oct 26;735(1):95-103 [PMID: 6194820]
  29. EMBO J. 2012 May 30;31(11):2648-59 [PMID: 22543870]
  30. Biochim Biophys Acta. 2014 Mar;1838(3):994-1002 [PMID: 24374317]
  31. J Bacteriol. 1979 Dec;140(3):843-7 [PMID: 391802]
  32. Mol Microbiol. 2008 Apr;68(2):298-313 [PMID: 18383615]
  33. PLoS Comput Biol. 2013;9(1):e1002878 [PMID: 23359663]
  34. FEMS Microbiol Lett. 2009 Aug;297(2):209-16 [PMID: 19552707]
  35. Environ Microbiol Rep. 2014 Feb;6(1):1-13 [PMID: 24596257]
  36. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  37. Cell. 2010 Sep 3;142(5):737-48 [PMID: 20813261]
  38. Phys Chem Chem Phys. 2011 Jan 28;13(4):1368-78 [PMID: 21152516]
  39. Cell. 2006 Apr 7;125(1):71-84 [PMID: 16615891]
  40. Mol Microbiol. 2012 May;84(3):463-85 [PMID: 22435712]
  41. Biochem J. 2013 Apr 15;451(2):269-75 [PMID: 23356219]
  42. EMBO J. 2011 Apr 20;30(8):1485-96 [PMID: 21399613]
  43. Annu Rev Biophys Biomol Struct. 2007;36:107-30 [PMID: 17263662]
  44. Mol Cell. 2007 Apr 27;26(2):165-74 [PMID: 17466620]
  45. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):672-7 [PMID: 23267085]
  46. Structure. 2014 Sep 2;22(9):1239-1251 [PMID: 25087511]
  47. J Bacteriol. 2003 Jul;185(13):3696-702 [PMID: 12813061]
  48. J Mol Biol. 2006 Mar 10;356(5):1193-206 [PMID: 16406409]
  49. Biochemistry. 2004 Apr 13;43(14):4240-50 [PMID: 15065868]
  50. J Bacteriol. 1996 Jan;178(2):470-6 [PMID: 8550468]
  51. Mol Microbiol. 1996 Nov;22(4):703-14 [PMID: 8951817]
  52. J Bacteriol. 2011 Mar;193(5):1222-8 [PMID: 21193607]
  53. PLoS Genet. 2009 Mar;5(3):e1000428 [PMID: 19300486]
  54. Mol Microbiol. 2016 Sep;101(6):1024-38 [PMID: 27282333]

MeSH Term

Escherichia coli
Escherichia coli Proteins
Osmotic Pressure
Salmonella

Chemicals

Escherichia coli Proteins
PhoP protein, E coli
PhoQ protein, E coli

Word Cloud

Created with Highcharts 10.0.0PhoQ/PhoPtwo-componentsystemresponsePhoQbacterialenterobacteriastimulihostshowcanosmoticupshiftwithinestablisheddomainTMmembranelateralpressureosmosensinghyperosmoticstressplaysessentialroleenvironmentmammalianhostsknownsenseseveralpotentiallyassociatedincludingextracellularmagnesiumlimitationlowpHpresencecationicantimicrobialpeptidessystemsalsoperceiveanotherkeystimulusbacteriabecomeexposedcontrastpreviouslydetectionrequireperiplasmicsensorInsteadactivityaffectedlengthtransmembranehelixwellthereforeproposereliesconformationalchangeinducedperturbationcellthicknessconditionsFurthermoremediatedfoundimprovegrowthrecoverypartlystabilizationsigmafactorRpoSfindingsdirectlylinksuggestingmediateconcertedhost-relatedcuesOsmosensingosmolaritysignaltransductionvirulence

Similar Articles

Cited By (62)