Phylogeography of the termite Macrotermes gilvus and insight into ancient dispersal corridors in Pleistocene Southeast Asia.

G Veera Singham, Ahmad Sofiman Othman, Chow-Yang Lee
Author Information
  1. G Veera Singham: Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia. ORCID
  2. Ahmad Sofiman Othman: Population Genetics Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.
  3. Chow-Yang Lee: Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.

Abstract

Dispersal of soil-dwelling organisms via the repeatedly exposed Sunda shelf through much of the Pleistocene in Southeast Asia has not been studied extensively, especially for invertebrates. Here we investigated the phylogeography of an endemic termite species, Macrotermes gilvus (Hagen), to elucidate the spatiotemporal dynamics of dispersal routes of terrestrial fauna in Pleistocene Southeast Asia. We sampled 213 termite colonies from 66 localities throughout the region. Independently inherited microsatellites and mtDNA markers were used to infer the phylogeographic framework of M. gilvus. Discrete phylogeographic analysis and molecular dating based on fossil calibration were used to infer the dynamics of M. gilvus dispersal in time and space across Southeast Asia. We found that the termite dispersal events were consistently dated within the Pleistocene time frame. The dispersal pattern was multidirectional, radiating eastwards and southwards out of Indochina, which was identified as the origin for dispersal events. We found no direct dispersal events between Sumatra and Borneo despite the presence of a terrestrial connection between them during the Pleistocene. Instead, central Java served as an important link allowing termite colonies to be established in Borneo and Sumatra. Our findings support the hypothesis of a north-south dispersal corridor in Southeast Asia and suggest the presence of alternative dispersal routes across Sundaland during the Pleistocene. For the first time, we also propose that a west-east dispersal through over-water rafting likely occurred across the Pleistocene South China Sea. We found at least two independent entry routes for terrestrial species to infiltrate Sumatra and Borneo at different times.

References

  1. PLoS One. 2012;7(12):e52089 [PMID: 23284881]
  2. Evolution. 1948 Dec;2(4):314-21 [PMID: 18104589]
  3. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  4. Bioinformatics. 2001 Aug;17(8):754-5 [PMID: 11524383]
  5. Environ Entomol. 2012 Apr;41(2):426-31 [PMID: 22507019]
  6. Mol Biol Evol. 2011 Aug;28(8):2275-88 [PMID: 21335339]
  7. Mol Ecol. 2011 Jun;20(12):2619-27 [PMID: 21481052]
  8. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5100-5 [PMID: 24706841]
  9. Bioinformatics. 1998;14(9):817-8 [PMID: 9918953]
  10. BMC Evol Biol. 2012 Jul 30;12:130 [PMID: 22846393]
  11. Mol Ecol. 2000 Oct;9(10):1657-9 [PMID: 11050560]
  12. PLoS Comput Biol. 2009 Sep;5(9):e1000520 [PMID: 19779555]
  13. Mol Biol Evol. 2010 Apr;27(4):747-52 [PMID: 20022889]
  14. Bioinformatics. 2001 Dec;17(12):1246-7 [PMID: 11751242]
  15. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  16. Mol Phylogenet Evol. 2011 Feb;58(2):317-28 [PMID: 21074625]
  17. Mol Ecol. 2007 Sep;16(17):3522-32 [PMID: 17845427]
  18. Izv Akad Nauk Ser Biol. 2010 Jul-Aug;(4):442-50 [PMID: 20799645]
  19. Bioinformatics. 2011 Oct 15;27(20):2910-2 [PMID: 21911333]
  20. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16790-5 [PMID: 25385612]
  21. J Hum Evol. 2009 Jan;56(1):11-24 [PMID: 19007966]
  22. PLoS Biol. 2004 Dec;2(12):e442 [PMID: 15583716]
  23. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11188-93 [PMID: 19549829]
  24. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15508-11 [PMID: 20660748]
  25. BMC Evol Biol. 2007 Nov 08;7:214 [PMID: 17996036]
  26. Mol Ecol. 2010 Nov;19(21):4800-11 [PMID: 20958816]
  27. BMC Genet. 2005 Mar 11;6:13 [PMID: 15760479]
  28. Mol Biol Evol. 2017 Mar 1;34(3):589-597 [PMID: 28025274]
  29. Mol Phylogenet Evol. 2007 Oct;45(1):239-50 [PMID: 17714956]
  30. Nature. 2010 Feb 4;463(7281):653-6 [PMID: 20090678]
  31. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  32. PLoS One. 2011;6(10):e25238 [PMID: 21984907]
  33. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12343-7 [PMID: 21746913]
  34. Nature. 2000 Feb 24;403(6772):853-8 [PMID: 10706275]
  35. Proc Biol Sci. 2010 Feb 7;277(1680):359-65 [PMID: 19828546]

MeSH Term

Animals
Asia, Southeastern
DNA, Mitochondrial
Female
Fossils
Genetic Variation
Isoptera
Microsatellite Repeats
Phylogeography

Chemicals

DNA, Mitochondrial

Word Cloud

Created with Highcharts 10.0.0dispersalPleistoceneSoutheastAsiatermitegilvusroutesterrestrialtimeacrossfoundeventsSumatraBorneospeciesMacrotermesdynamicscoloniesusedinferphylogeographicMpresenceDispersalsoil-dwellingorganismsviarepeatedlyexposedSundashelfmuchstudiedextensivelyespeciallyinvertebratesinvestigatedphylogeographyendemicHagenelucidatespatiotemporalfaunasampled21366localitiesthroughoutregionIndependentlyinheritedmicrosatellitesmtDNAmarkersframeworkDiscreteanalysismoleculardatingbasedfossilcalibrationspaceconsistentlydatedwithinframepatternmultidirectionalradiatingeastwardssouthwardsIndochinaidentifiedorigindirectdespiteconnectionInsteadcentralJavaservedimportantlinkallowingestablishedfindingssupporthypothesisnorth-southcorridorsuggestalternativeSundalandfirstalsoproposewest-eastover-waterraftinglikelyoccurredSouthChinaSealeasttwoindependententryinfiltratedifferenttimesPhylogeographyinsightancientcorridors

Similar Articles

Cited By (2)