Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.

Adnan Mujahid, Franz L Dickert
Author Information
  1. Adnan Mujahid: Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria
  2. Franz L Dickert: Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria

Abstract

Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

Keywords

References

  1. Nanotechnology. 2008 Aug 20;19(33):332001 [PMID: 21730614]
  2. Sensors (Basel). 2012;12 (3):2610-31 [PMID: 22736968]
  3. Anal Chem. 2005 Jul 15;77(14):4595-603 [PMID: 16013878]
  4. Anal Chem. 2002 Mar 15;74(6):1302-6 [PMID: 11922297]
  5. J Phys Chem B. 2010 Sep 30;114(38):12213-20 [PMID: 20825175]
  6. Anal Chem. 2003 Oct 15;75(20):5561-6 [PMID: 14710839]
  7. Anal Bioanal Chem. 2007 Jan;387(2):561-6 [PMID: 17124573]
  8. Anal Chim Acta. 2010 Aug 18;675(1):53-7 [PMID: 20708116]
  9. Biosens Bioelectron. 2017 Jul 15;93:146-154 [PMID: 27660016]
  10. Sensors (Basel). 2009;9(12 ):9805-15 [PMID: 22303149]
  11. Chem Rev. 2008 Feb;108(2):726-45 [PMID: 18220425]
  12. Chem Rev. 2000 Jul 12;100(7):2627-48 [PMID: 11749298]
  13. Anal Chem. 1999 Mar 1;71(5):1033-40 [PMID: 21662772]
  14. Anal Bioanal Chem. 2008 Jul;391(5):1509-19 [PMID: 18265962]
  15. IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Mar;48(2):530-7 [PMID: 11370367]
  16. Nano Lett. 2008 Oct;8(10):3137-40 [PMID: 18763832]
  17. Anal Chem. 2002 Aug 15;74(16):3942-51 [PMID: 12199559]
  18. Nanotechnology. 2009 Nov 4;20(44):445502 [PMID: 19809107]
  19. IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jan;53(1):251-4 [PMID: 16471453]
  20. Angew Chem Int Ed Engl. 2008;47(35):6550-70 [PMID: 18642264]
  21. Biosens Bioelectron. 2015 Sep 15;71:261-268 [PMID: 25913447]
  22. Anal Chim Acta. 2013 Jul 17;787:36-49 [PMID: 23830419]
  23. Chem Rev. 1996 Jun 20;96(4):1533-1554 [PMID: 11848802]
  24. J Am Chem Soc. 2009 Mar 25;131(11):3800-1 [PMID: 19249842]
  25. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(2):317-32 [PMID: 18238546]
  26. Trends Biochem Sci. 1994 Jan;19(1):9-14 [PMID: 8140624]
  27. Sensors (Basel). 2010;10 (6):5469-502 [PMID: 22219672]
  28. IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Mar;57(3):654-68 [PMID: 20211785]
  29. Nat Mater. 2007 Sep;6(9):652-5 [PMID: 17660825]
  30. Angew Chem Int Ed Engl. 2006 Apr 10;45(16):2626-9 [PMID: 16544345]
  31. J Am Chem Soc. 2006 Feb 8;128(5):1412-3 [PMID: 16448087]
  32. Sensors (Basel). 2015 Jun 11;15(6):13839-50 [PMID: 26110408]
  33. Sci Rep. 2014 Nov 26;4:7206 [PMID: 25425458]
  34. Lett Appl Microbiol. 2006 Jan;42(1):24-9 [PMID: 16411915]
  35. Anal Chim Acta. 2006 May 24;568(1-2):28-40 [PMID: 17761243]
  36. Sensors (Basel). 2010;10 (3):2088-106 [PMID: 22294916]
  37. Chem Rev. 2000 Jul 12;100(7):2495-504 [PMID: 11749293]
  38. Biosens Bioelectron. 2004 Jan 15;19(6):627-32 [PMID: 14683647]

Word Cloud

Created with Highcharts 10.0.0SAWacousticwavedevicessensingapplicationsSurfacechemicalfrequencycansmalldesignrecognitionlayerscoatingssensorsshallsurfaceresonatorsrepresentprominentrangesseveralhundredMHzGHzthereforerecordremarkablydiminutiveshiftsresultingexceptionallymassloadingsminiaturizedhighthermalstabilitypossibilitywirelessintegrationmakehighlycompetitiveOwingspecialcharacteristicswidelyacceptedsmarttransducerscombinedvarietybasedhost-guestinteractionsmetaloxidecarbonnanotubesgraphenesheetsfunctionalpolymersbiologicalreceptorsresultbroadspectrumieranginggasmoleculeslargebio-analytesevenwholecellstructuresreviewcoverfundamentalsmoderndevelopmentsrespectinterfacialreceptorexemplarysensorrelatedproblemspossiblesolutionsalsocoveredfocusemergingtrendsfutureopportunitiesmakingestablishedtechnologyAcousticWaveChemicalSensingApplicationsRecognitionLayersRFID-tagspiezoelectricsheartransverseSTWshear-horizontalSH-SAW

Similar Articles

Cited By