CO Reduction: From the Electrochemical to Photochemical Approach.

Jinghua Wu, Yang Huang, Wen Ye, Yanguang Li
Author Information
  1. Jinghua Wu: Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China.
  2. Yang Huang: Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China.
  3. Wen Ye: Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China.
  4. Yanguang Li: Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China. ORCID

Abstract

Increasing CO concentration in the atmosphere is believed to have a profound impact on the global climate. To reverse the impact would necessitate not only curbing the reliance on fossil fuels but also developing effective strategies capture and utilize CO from the atmosphere. Among several available strategies, CO reduction via the electrochemical or photochemical approach is particularly attractive since the required energy input can be potentially supplied from renewable sources such as solar energy. In this Review, an overview on these two different but inherently connected approaches is provided and recent progress on the development, engineering, and understanding of CO reduction electrocatalysts and photocatalysts is summarized. First, the basic principles that govern electrocatalytic or photocatalytic CO reduction and their important performance metrics are discussed. Then, a detailed discussion on different CO reduction electrocatalysts and photocatalysts as well as their generally designing strategies is provided. At the end of this Review, perspectives on the opportunities and possible directions for future development of this field are presented.

Keywords

References

  1. Adv Mater. 2016 May;28(18):3423-52 [PMID: 26996295]
  2. J Am Chem Soc. 2015 Apr 15;137(14):4606-9 [PMID: 25835085]
  3. Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2406-9 [PMID: 25565575]
  4. J Am Chem Soc. 2015 Aug 5;137(30):9547-50 [PMID: 26194000]
  5. J Am Chem Soc. 2014 May 14;136(19):6798-801 [PMID: 24725054]
  6. Chem Rev. 2015 Dec 9;115(23):12936-73 [PMID: 26335851]
  7. Angew Chem Int Ed Engl. 2013 May 27;52(22):5776-9 [PMID: 23610007]
  8. Chem Commun (Camb). 2015 May 4;51(36):7645-8 [PMID: 25845424]
  9. Chem Soc Rev. 2009 Jan;38(1):89-99 [PMID: 19088968]
  10. ACS Nano. 2015 May 26;9(5):5364-71 [PMID: 25897553]
  11. J Am Chem Soc. 2017 Mar 22;139(11):4123-4129 [PMID: 28215081]
  12. J Am Chem Soc. 2014 Oct 8;136(40):14107-13 [PMID: 25259478]
  13. J Am Chem Soc. 2010 Oct 20;132(41):14385-7 [PMID: 20866065]
  14. Angew Chem Int Ed Engl. 2012 Mar 5;51(10):2395-9 [PMID: 22282345]
  15. Nat Commun. 2016 Sep 02;7:12697 [PMID: 27585984]
  16. J Am Chem Soc. 2015 Sep 16;137(36):11631-6 [PMID: 26322741]
  17. Chem Soc Rev. 2012 Oct 7;41(19):6684-704 [PMID: 22729147]
  18. Angew Chem Int Ed Engl. 2012 Dec 21;51(52):13089-92 [PMID: 23161569]
  19. Chem Sci. 2016 Jul 1;7(7):4364-4371 [PMID: 30155083]
  20. J Am Chem Soc. 2015 Apr 8;137(13):4288-91 [PMID: 25746233]
  21. J Am Chem Soc. 2016 Oct 5;138(39):13006-13012 [PMID: 27626299]
  22. Phys Chem Chem Phys. 2012 Jan 7;14(1):76-81 [PMID: 22071504]
  23. Angew Chem Int Ed Engl. 2015 Sep 21;54(39):11350-66 [PMID: 26079429]
  24. Science. 2011 Nov 4;334(6056):643-4 [PMID: 21960532]
  25. Chem Commun (Camb). 2014 Feb 25;50(16):2005-7 [PMID: 24413255]
  26. Chem Rev. 2010 Nov 10;110(11):6503-70 [PMID: 21062099]
  27. Adv Mater. 2016 Aug;28(30):6485-90 [PMID: 27171564]
  28. ACS Nano. 2015 Aug 25;9(8):8384-93 [PMID: 26173084]
  29. Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9297-300 [PMID: 27352078]
  30. Nano Lett. 2009 Feb;9(2):731-7 [PMID: 19173633]
  31. J Am Chem Soc. 2014 Nov 26;136(47):16473-6 [PMID: 25325519]
  32. J Am Chem Soc. 2014 Feb 5;136(5):1734-7 [PMID: 24417470]
  33. Nanoscale. 2014;6(3):1896-900 [PMID: 24366408]
  34. Angew Chem Int Ed Engl. 2007;46(1-2):52-66 [PMID: 17103469]
  35. Nature. 1972 Jul 7;238(5358):37-8 [PMID: 12635268]
  36. Nat Commun. 2014 Jul 30;5:4470 [PMID: 25073814]
  37. J Am Chem Soc. 2008 Apr 16;130(15):5018-9 [PMID: 18361492]
  38. Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9748-52 [PMID: 27377237]
  39. Adv Mater. 2013 May 7;25(17):2452-6 [PMID: 23450777]
  40. Chem Rev. 2016 Jun 22;116(12):7159-329 [PMID: 27199146]
  41. Science. 2016 Jan 1;351(6268):74-7 [PMID: 26721997]
  42. J Am Chem Soc. 2013 Jun 19;135(24):8798-801 [PMID: 23735115]
  43. Chem Soc Rev. 2009 Jan;38(1):253-78 [PMID: 19088977]
  44. ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7425-31 [PMID: 23844887]
  45. Chem Rev. 2010 Jan;110(1):527-46 [PMID: 19817361]
  46. Angew Chem Int Ed Engl. 2012 Apr 2;51(14):3364-7 [PMID: 22359408]
  47. J Am Chem Soc. 2011 Sep 28;133(38):14998-5007 [PMID: 21861530]
  48. ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8166-75 [PMID: 25815559]
  49. Chem Soc Rev. 2014 Aug 7;43(15):5234-44 [PMID: 24841176]
  50. Phys Chem Chem Phys. 2014 Jul 21;16(27):13814-9 [PMID: 24915537]
  51. Adv Sci (Weinh). 2017 Jan 13;4(5):1600337 [PMID: 28546906]
  52. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15560-4 [PMID: 23019352]
  53. Science. 2016 Jun 3;352(6290):1210-3 [PMID: 27257255]
  54. Acc Chem Res. 2013 Aug 20;46(8):1900-9 [PMID: 23530781]
  55. Adv Mater. 2015 Oct 21;27(39):5906-14 [PMID: 26308559]
  56. J Am Chem Soc. 2012 Dec 12;134(49):19969-72 [PMID: 23171134]
  57. Nat Commun. 2016 Jun 30;7:12123 [PMID: 27356485]
  58. J Am Chem Soc. 2012 Jun 20;134(24):10237-43 [PMID: 22616945]
  59. Angew Chem Int Ed Engl. 2011 Feb 25;50(9):2133-7 [PMID: 21344568]
  60. J Am Chem Soc. 2015 Apr 15;137(14):4701-8 [PMID: 25812119]
  61. ACS Nano. 2010 Mar 23;4(3):1259-78 [PMID: 20141175]
  62. Science. 2016 Jul 29;353(6298):467-70 [PMID: 27471300]
  63. J Phys Chem Lett. 2015 Nov 5;6(21):4244-51 [PMID: 26538039]
  64. Anal Chem. 2010 Aug 1;82(15):6321-8 [PMID: 20590161]
  65. ACS Nano. 2015 Feb 24;9(2):2111-9 [PMID: 25629438]
  66. Adv Mater. 2015 Dec 16;27(47):7824-31 [PMID: 26509528]
  67. J Am Chem Soc. 2014 Nov 12;136(45):15969-76 [PMID: 25329687]
  68. J Am Chem Soc. 2017 Jan 11;139(1):47-50 [PMID: 27958727]
  69. Science. 2002 Nov 1;298(5595):981-7 [PMID: 12411695]
  70. J Am Chem Soc. 2015 Jan 21;137(2):604-7 [PMID: 25551584]
  71. Chem Commun (Camb). 2015 Jan 25;51(7):1345-8 [PMID: 25485839]
  72. J Am Chem Soc. 2015 Nov 11;137(44):14007-10 [PMID: 26479775]
  73. J Am Chem Soc. 2009 Sep 2;131(34):12290-7 [PMID: 19705915]
  74. Angew Chem Int Ed Engl. 2016 Dec 5;55(49):15282-15286 [PMID: 27862743]
  75. Chem Rev. 2007 Jul;107(7):2891-959 [PMID: 17590053]
  76. Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3594-3598 [PMID: 28217911]
  77. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14057-61 [PMID: 25225379]
  78. Adv Mater. 2014 Jul 16;26(27):4607-26 [PMID: 24861670]
  79. J Am Chem Soc. 2014 Jun 4;136(22):7845-8 [PMID: 24779427]
  80. J Am Chem Soc. 2012 Jun 20;134(24):9864-7 [PMID: 22670713]
  81. ChemSusChem. 2016 Feb 19;9(4):358-63 [PMID: 26663854]
  82. Nat Commun. 2016 Feb 18;7:10748 [PMID: 26888578]
  83. J Am Chem Soc. 2014 Jun 11;136(23):8361-7 [PMID: 24783975]
  84. Nat Commun. 2016 Dec 13;7:13869 [PMID: 27958290]
  85. Chem Rev. 2012 Jul 11;112(7):4124-55 [PMID: 22452296]
  86. ChemSusChem. 2014 Apr;7(4):1086-93 [PMID: 24574039]
  87. Nat Commun. 2014;5:3242 [PMID: 24476921]
  88. J Phys Chem Lett. 2013 Feb 7;4(3):388-92 [PMID: 26281729]
  89. Adv Mater. 2015 Nov 18;27(43):6906-13 [PMID: 26422111]
  90. Adv Sci (Weinh). 2017 Sep 12;4(11):1700194 [PMID: 29201614]
  91. Science. 2001 Jul 13;293(5528):269-71 [PMID: 11452117]
  92. J Am Chem Soc. 2014 Sep 24;136(38):13319-25 [PMID: 25137433]
  93. Nat Mater. 2013 Sep;12(9):798-801 [PMID: 23832124]
  94. J Am Chem Soc. 2016 Aug 17;138(32):10260-4 [PMID: 27459021]
  95. Chem Soc Rev. 2016 Aug 22;45(17):4747-65 [PMID: 27276189]
  96. Nature. 2014 Apr 24;508(7497):504-7 [PMID: 24717429]
  97. Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3645-3649 [PMID: 28229519]
  98. Acc Chem Res. 2017 Apr 18;50(4):915-923 [PMID: 28205437]
  99. J Am Chem Soc. 2017 Mar 29;139(12):4290-4293 [PMID: 28291338]
  100. Chem Commun (Camb). 2011 Jun 28;47(24):6763-83 [PMID: 21448488]
  101. Nature. 2016 Jan 7;529(7584):68-71 [PMID: 26738592]
  102. Angew Chem Int Ed Engl. 2016 Jun 1;55(23):6771-5 [PMID: 27098284]
  103. Chem Commun (Camb). 2015 Jan 18;51(5):858-61 [PMID: 25429376]
  104. Angew Chem Int Ed Engl. 2017 May 22;56(22):6068-6072 [PMID: 28160368]
  105. Chem Rev. 2016 Dec 14;116(23):14587-14619 [PMID: 27960266]
  106. J Am Chem Soc. 2012 Jul 11;134(27):11276-81 [PMID: 22694165]
  107. Chemistry. 2011 Aug 8;17(33):9057-61 [PMID: 21744400]
  108. Angew Chem Int Ed Engl. 2015 Jan 12;54(3):841-5 [PMID: 25422137]
  109. Dalton Trans. 2013 Nov 14;42(42):15133-8 [PMID: 24002700]
  110. Sci Rep. 2013;3:1667 [PMID: 23588925]
  111. Angew Chem Int Ed Engl. 2012 Apr 16;51(16):3915-8 [PMID: 22392837]
  112. Angew Chem Int Ed Engl. 2012 Jan 2;51(1):68-89 [PMID: 22109976]
  113. J Am Chem Soc. 2011 Oct 5;133(39):15240-3 [PMID: 21899327]
  114. Chem Commun (Camb). 2012 Jan 30;48(9):1269-71 [PMID: 22179125]
  115. Chem Soc Rev. 2014 Jan 21;43(2):631-75 [PMID: 24186433]
  116. J Am Chem Soc. 2014 May 14;136(19):6978-86 [PMID: 24746172]
  117. Acc Chem Res. 2009 Dec 21;42(12):1861-70 [PMID: 19908828]
  118. Angew Chem Int Ed Engl. 2015 Apr 20;54(17):5179-82 [PMID: 25728325]
  119. J Am Chem Soc. 2017 Apr 26;139(16):5660-5663 [PMID: 28385017]
  120. J Am Chem Soc. 2012 May 2;134(17):7231-4 [PMID: 22506621]
  121. Chem Sci. 2017 Jun 1;8(6):4242-4249 [PMID: 29081960]
  122. Angew Chem Int Ed Engl. 2015 Feb 9;54(7):2146-50 [PMID: 25537315]
  123. Angew Chem Int Ed Engl. 2016 Jan 11;55(2):698-702 [PMID: 26783062]
  124. J Am Chem Soc. 2009 Sep 30;131(38):13833-9 [PMID: 19725513]
  125. J Nanosci Nanotechnol. 2009 Jul;9(7):4397-403 [PMID: 19916464]
  126. ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3372-7 [PMID: 22738275]
  127. J Am Chem Soc. 2017 Mar 8;139(9):3438-3445 [PMID: 28208016]
  128. J Am Chem Soc. 2014 Jun 25;136(25):8839-42 [PMID: 24918628]
  129. Angew Chem Int Ed Engl. 2013 Jul 15;52(29):7372-408 [PMID: 23765842]
  130. Phys Chem Chem Phys. 2015 Jul 21;17(27):17995-8003 [PMID: 26096980]
  131. Angew Chem Int Ed Engl. 2012 Aug 6;51(32):8008-11 [PMID: 22760849]
  132. Chem Commun (Camb). 2012 Jan 25;48(7):1048-50 [PMID: 22158833]
  133. Nat Mater. 2009 Jan;8(1):76-80 [PMID: 18997776]
  134. ACS Nano. 2017 Jan 24;11(1):453-460 [PMID: 27991762]
  135. Chem Soc Rev. 2014 Nov 21;43(22):7501-19 [PMID: 24473472]
  136. Angew Chem Int Ed Engl. 2014 Jan 13;53(3):871-4 [PMID: 24281847]
  137. Angew Chem Int Ed Engl. 2015 Nov 16;54(47):13971-4 [PMID: 26419397]
  138. Chem Commun (Camb). 2011 Aug 7;47(29):8361-3 [PMID: 21695294]
  139. Langmuir. 2014 Jul 1;30(25):7593-600 [PMID: 24940629]
  140. J Am Chem Soc. 2013 Nov 13;135(45):16833-6 [PMID: 24156631]
  141. Nat Commun. 2014 Sep 11;5:4948 [PMID: 25208828]
  142. Adv Mater. 2014 Aug 6;26(29):4920-35 [PMID: 24888530]
  143. J Am Chem Soc. 2014 Nov 19;136(46):16132-5 [PMID: 25380393]
  144. ACS Appl Mater Interfaces. 2011 Sep;3(9):3594-601 [PMID: 21815668]
  145. Angew Chem Int Ed Engl. 2017 Jan 16;56(3):796-800 [PMID: 28000371]
  146. Angew Chem Int Ed Engl. 2010 Aug 23;49(36):6400-4 [PMID: 20652925]
  147. Environ Sci Technol. 2010 Oct 1;44(19):7641-6 [PMID: 20831154]

Word Cloud

Created with Highcharts 10.0.0COreductionstrategiesatmosphereimpactenergyReviewdifferentprovideddevelopmentelectrocatalystsphotocatalystsIncreasingconcentrationbelievedprofoundglobalclimatereversenecessitatecurbingreliancefossilfuelsalsodevelopingeffectivecaptureutilizeAmongseveralavailableviaelectrochemicalphotochemicalapproachparticularlyattractivesincerequiredinputcanpotentiallysuppliedrenewablesourcessolaroverviewtwoinherentlyconnectedapproachesrecentprogressengineeringunderstandingsummarizedFirstbasicprinciplesgovernelectrocatalyticphotocatalyticimportantperformancemetricsdiscusseddetaileddiscussionwellgenerallydesigningendperspectivesopportunitiespossibledirectionsfuturefieldpresentedReduction:ElectrochemicalPhotochemicalApproachCO2electrocatalysisnanotechnologyphotocatalysis

Similar Articles

Cited By