Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters.

Boseung Choi, Grzegorz A Rempala, Jae Kyoung Kim
Author Information
  1. Boseung Choi: Korea University Sejong campus, Division of Economics and Statistics, Department of National Statistics, Sejong, 30019, Korea.
  2. Grzegorz A Rempala: The Ohio State University, Division of Biostatistics and Mathematical Biosciences Institute, Columbus, OH, 43210, USA.
  3. Jae Kyoung Kim: Korea Advanced Institute of Science and Technology, Department of Mathematical Sciences, Daejeon, 34141, Korea. jaekkim@kaist.ac.kr. ORCID

Abstract

Examining enzyme kinetics is critical for understanding cellular systems and for using enzymes in industry. The Michaelis-Menten equation has been widely used for over a century to estimate the enzyme kinetic parameters from reaction progress curves of substrates, which is known as the progress curve assay. However, this canonical approach works in limited conditions, such as when there is a large excess of substrate over enzyme. Even when this condition is satisfied, the identifiability of parameters is not always guaranteed, and often not verifiable in practice. To overcome such limitations of the canonical approach for the progress curve assay, here we propose a Bayesian approach based on an equation derived with the total quasi-steady-state approximation. In contrast to the canonical approach, estimates obtained with this proposed approach exhibit little bias for any combination of enzyme and substrate concentrations. Importantly, unlike the canonical approach, an optimal experiment to identify parameters with certainty can be easily designed without any prior information. Indeed, with this proposed design, the kinetic parameters of diverse enzymes with disparate catalytic efficiencies, such as chymotrypsin, fumarase, and urease, can be accurately and precisely estimated from a minimal amount of timecourse data. A publicly accessible computational package performing such accurate and efficient Bayesian inference for enzyme kinetics is provided.

References

  1. J Theor Biol. 1990 Mar 22;143(2):163-95 [PMID: 2200929]
  2. FEBS J. 2015 Jun;282(12):2309-16 [PMID: 25808291]
  3. Biochim Biophys Acta. 1991 Nov 15;1080(3):231-6 [PMID: 1954231]
  4. ScientificWorldJournal. 2012;2012:969767 [PMID: 22645485]
  5. Cent Eur J Biol. 2008 Dec 1;3(4):345-350 [PMID: 19562082]
  6. J Biol Chem. 1970 Sep 25;245(18):4814-8 [PMID: 5456154]
  7. Methods Enzymol. 2009;467:601-26 [PMID: 19897109]
  8. PLoS Comput Biol. 2013;9(7):e1003139 [PMID: 23935469]
  9. Cell Syst. 2017 Jan 25;4(1):109-120.e11 [PMID: 28065574]
  10. BMC Syst Biol. 2012 May 14;6:39 [PMID: 22583770]
  11. Curr Opin Biotechnol. 2002 Aug;13(4):345-51 [PMID: 12323357]
  12. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12627-32 [PMID: 26417077]
  13. Drug Metab Dispos. 2000 Mar;28(3):246-54 [PMID: 10681367]
  14. FEBS J. 2014 Jan;281(2):549-71 [PMID: 24034816]
  15. Nat Commun. 2016 Jun 16;7:11926 [PMID: 27305972]
  16. Drug Metab Dispos. 2002 Jul;30(7):831-7 [PMID: 12065442]
  17. Biophys Chem. 2016 Dec;219:17-27 [PMID: 27677118]
  18. Biophys J. 2011 Apr 6;100(7):1617-26 [PMID: 21463574]
  19. Science. 1967 Nov 17;158(3803):936-7 [PMID: 6054167]
  20. Anal Chem. 2012 Nov 20;84(22):10136-46 [PMID: 23128345]
  21. Biochem J. 1925;19(2):338-9 [PMID: 16743508]
  22. Bull Math Biol. 2001 Jan;63(1):95-116 [PMID: 11146885]
  23. Biostatistics. 2012 Jan;13(1):153-65 [PMID: 21835814]
  24. Nat Commun. 2013;4:1332 [PMID: 23299882]
  25. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6533-7 [PMID: 17412833]
  26. Methods Enzymol. 1995;249:61-90 [PMID: 7791628]
  27. Anal Biochem. 2009 Apr 1;387(1):30-41 [PMID: 19168024]
  28. Genes Dev. 2010 Sep 1;24(17 ):1861-75 [PMID: 20810646]
  29. Nat Biotechnol. 2001 Jul;19(7):661-7 [PMID: 11433279]
  30. Anal Biochem. 2009 Apr 1;387(1):20-9 [PMID: 19154726]
  31. J Theor Biol. 1979 Dec 21;81(4):671-84 [PMID: 537393]
  32. IET Syst Biol. 2011 Jan;5(1):58 [PMID: 21261403]
  33. Science. 2015 Aug 28;349(6251):986-9 [PMID: 26315440]
  34. Biochem J. 1989 Mar 1;258(2):397-402 [PMID: 2705990]
  35. PLoS Comput Biol. 2017 Jun 5;13(6):e1005571 [PMID: 28582397]
  36. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13516-13521 [PMID: 27834218]
  37. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10555-60 [PMID: 12145321]
  38. PLoS Comput Biol. 2007 Mar 16;3(3):e45 [PMID: 17367203]
  39. Sci Rep. 2013;3:2658 [PMID: 24029878]
  40. Bull Math Biol. 1996 Jan;58(1):43-63 [PMID: 8819753]
  41. Nat Rev Drug Discov. 2005 Oct;4(10):825-33 [PMID: 16224454]
  42. Biophys J. 2014 Aug 5;107(3):783-793 [PMID: 25099817]
  43. Biophys J. 2008 Oct;95(8):3563-74 [PMID: 18621809]
  44. Methods. 2001 Jun;24(2):168-74 [PMID: 11384191]
  45. Bull Math Biol. 2003 Nov;65(6):1111-29 [PMID: 14607291]
  46. ACS Synth Biol. 2013 Oct 18;2(10):587-93 [PMID: 23768065]
  47. IET Syst Biol. 2016 Aug;10(4):125-35 [PMID: 27444022]
  48. BMC Syst Biol. 2015 Nov 23;9:87 [PMID: 26597159]
  49. Nano Lett. 2012 Jul 11;12(7):3793-802 [PMID: 22731798]
  50. FEBS Lett. 2013 Sep 2;587(17):2753-66 [PMID: 23850893]

MeSH Term

Algorithms
Bayes Theorem
Catalysis
Chymotrypsin
Fumarate Hydratase
Humans
Kinetics
Urease

Chemicals

Chymotrypsin
Urease
Fumarate Hydratase

Word Cloud

Created with Highcharts 10.0.0enzymeapproachparameterscanonicalkineticprogresskineticsenzymesMichaelis-MentenequationcurveassaysubstrateproposedcanExaminingcriticalunderstandingcellularsystemsusingindustrywidelyusedcenturyestimatereactioncurvessubstratesknownHoweverworkslimitedconditionslargeexcessEvenconditionsatisfiedidentifiabilityalwaysguaranteedoftenverifiablepracticeovercomelimitationsproposeBayesianbasedderivedtotalquasi-steady-stateapproximationcontrastestimatesobtainedexhibitlittlebiascombinationconcentrationsImportantlyunlikeoptimalexperimentidentifycertaintyeasilydesignedwithoutpriorinformationIndeeddesigndiversedisparatecatalyticefficiencieschymotrypsinfumaraseureaseaccuratelypreciselyestimatedminimalamounttimecoursedatapubliclyaccessiblecomputationalpackageperformingaccurateefficient BayesianinferenceprovidedBeyondequation:Accurateefficientestimation

Similar Articles

Cited By