Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease.

Hao Guo, Fan Zhang, Junjie Chen, Yong Xu, Jie Xiang
Author Information
  1. Hao Guo: Department of Software Engineering, College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
  2. Fan Zhang: Department of Software Engineering, College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
  3. Junjie Chen: Department of Software Engineering, College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
  4. Yong Xu: Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
  5. Jie Xiang: Department of Software Engineering, College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.

Abstract

Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance.

Keywords

References

  1. J Neurosci. 2010 Jul 14;30(28):9477-87 [PMID: 20631176]
  2. Brain. 2006 Mar;129(Pt 3):564-83 [PMID: 16399806]
  3. Radiology. 2011 Apr;259(1):213-21 [PMID: 21248238]
  4. Neuropsychol Rev. 2003 Jun;13(2):79-92 [PMID: 12887040]
  5. Neuroimage. 2012 Jan 16;59(2):1404-12 [PMID: 21888983]
  6. Med Image Anal. 2015 Feb;20(1):112-34 [PMID: 25476415]
  7. J Neurosci. 1994 Feb;14(2):655-66 [PMID: 8301356]
  8. Clin Neurophysiol. 2010 Aug;121(8):1153-75 [PMID: 20185365]
  9. Neuroimage. 2016 Nov 1;141:399-407 [PMID: 27485752]
  10. Brain. 2008 Dec;131(Pt 12):3277-85 [PMID: 19022861]
  11. Brain. 2009 Jan;132(Pt 1):213-24 [PMID: 18952674]
  12. Eur Radiol. 2006 Jan;16(1):193-206 [PMID: 16402259]
  13. Neurobiol Aging. 2009 Jul;30(7):1114-24 [PMID: 18053618]
  14. Neuroimage. 2013 Oct 15;80:426-44 [PMID: 23643999]
  15. J Alzheimers Dis. 2015;49(4):1051-64 [PMID: 26599055]
  16. Neuropsychopharmacology. 2006 Jun;31(6):1327-34 [PMID: 16292330]
  17. Neuroimage. 2015 Jan 15;105:493-506 [PMID: 25463459]
  18. Biol Psychiatry. 2013 Mar 1;73(5):472-81 [PMID: 22537793]
  19. J Neurol Neurosurg Psychiatry. 2005 Jan;76(1):11-4 [PMID: 15607988]
  20. J Alzheimers Dis. 2014;40(2):387-97 [PMID: 24473186]
  21. Med Image Anal. 2016 Aug;32:84-100 [PMID: 27060621]
  22. Comput Med Imaging Graph. 2016 Sep;52:82-88 [PMID: 27166430]
  23. Neuroimage. 2007 Apr 1;35(2):488-500 [PMID: 17254803]
  24. Hum Brain Mapp. 2009 Feb;30(2):638-49 [PMID: 18219621]
  25. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):724-32 [PMID: 25485444]
  26. IEEE Trans Image Process. 2012 Jul;21(7):3262-72 [PMID: 22410334]
  27. J Neurosci. 2003 Feb 1;23(3):986-93 [PMID: 12574428]
  28. Behav Brain Res. 2009 Jan 30;197(1):103-8 [PMID: 18786570]
  29. Neuroimage. 2000 Apr;11(4):289-301 [PMID: 10725185]
  30. J Neurosci. 2008 Sep 10;28(37):9239-48 [PMID: 18784304]
  31. PLoS One. 2014 Mar 10;9(3):e88476 [PMID: 24613934]
  32. Nat Rev Neurosci. 2001 Oct;2(10):685-94 [PMID: 11584306]
  33. J Alzheimers Dis. 2013;37(2):389-401 [PMID: 23948881]
  34. Neuroimage. 2003 Aug;19(4):1273-302 [PMID: 12948688]
  35. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  36. IEEE Trans Biomed Eng. 2014 Feb;61(2):576-89 [PMID: 24108708]
  37. Brain Struct Funct. 2014 Mar;219(2):641-56 [PMID: 23468090]
  38. IEEE Trans Med Imaging. 2011 May;30(5):1154-65 [PMID: 21478072]
  39. Neuroimage. 2008 Sep 1;42(3):1178-84 [PMID: 18598773]
  40. Brain Connect. 2014 Jun;4(5):361-70 [PMID: 24846713]
  41. J Neurosci. 2011 Nov 30;31(48):17514-26 [PMID: 22131413]
  42. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  43. PLoS One. 2015 Jun 11;10(6):e0130017 [PMID: 26066658]
  44. Neurology. 2008 Feb 12;70(7):512-20 [PMID: 17898323]
  45. Bioinformatics. 2005 Jun;21 Suppl 1:i47-56 [PMID: 15961493]
  46. Neurobiol Aging. 2007 Jan;28(1):1-7 [PMID: 16343696]
  47. Front Neurosci. 2015 Oct 16;9:383 [PMID: 26528123]
  48. Neurobiol Aging. 2009 Feb;30(2):284-98 [PMID: 17644222]
  49. J Alzheimers Dis. 2015;45(3):947-58 [PMID: 25633674]
  50. Hum Brain Mapp. 2011 Oct;32(10):1720-40 [PMID: 21077137]
  51. Neuroimage. 2010 Apr 15;50(3):935-49 [PMID: 20079441]
  52. Neuroimage. 2003 Jun;19(2 Pt 1):466-70 [PMID: 12814595]
  53. IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27 [PMID: 19110489]
  54. Arch Neurol. 1998 Mar;55(3):326-35 [PMID: 9520006]
  55. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 2):027105 [PMID: 17358454]
  56. J Biomed Semantics. 2011 Jul 29;2:3 [PMID: 21801410]
  57. Neuroimage. 2011 Aug 1;57(3):892-907 [PMID: 21605688]
  58. Brain Imaging Behav. 2016 Jun;10(2):342-56 [PMID: 26123390]
  59. J Neurol Sci. 2011 Oct 15;309(1-2):123-7 [PMID: 21783204]
  60. Brain Struct Funct. 2015 Jan;220(1):101-15 [PMID: 24072164]
  61. Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3297-310 [PMID: 19620125]
  62. Proc SIAM Int Conf Data Min. 2013;2013:82-93 [PMID: 25949925]
  63. Neuroimage. 2012 Aug 15;62(2):881-6 [PMID: 21964480]
  64. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  65. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  66. Arch Neurol. 2006 Jan;63(1):38-46 [PMID: 16401735]
  67. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  68. Brain. 2008 Apr;131(Pt 4):945-61 [PMID: 18299296]
  69. Neurobiol Aging. 2012 Sep;33(9):2018-28 [PMID: 21862179]
  70. J Neurosci. 2008 Apr 30;28(18):4756-66 [PMID: 18448652]
  71. J Neurosci. 2010 Jun 30;30(26):8720-33 [PMID: 20592194]
  72. Acupunct Electrother Res. 2008;33(1-2):9-17 [PMID: 18672741]
  73. Brain Connect. 2014 Jun;4(5):347-60 [PMID: 24766561]
  74. PLoS One. 2012;7(12):e50332 [PMID: 23227167]
  75. PLoS One. 2012;7(5):e37828 [PMID: 22666397]
  76. Neuroimage. 2009 Oct 1;47(4):1196-206 [PMID: 19463961]
  77. J Neurol Sci. 2002 Feb 15;194(1):15-9 [PMID: 11809161]

Word Cloud

Created with Highcharts 10.0.0brainregionsclassificationmethodAlzheimer'sfunctionalfeaturesdiseaseinteractionsamongimportantcanproposedinformationsubgraphregionhyper-networkdisordersnetworksabnormalconnectivityHoweverbasedignoreshigher-orderrelationshipseffectivelynetworkglobaltopologyperformancechangesinglelearningcombinesmultiplemagneticresonanceimagingrightMachinefMRIExploringvarioushelpfulunderstandingpathologicalunderpinningsneurologicalBrainproviderepresentationthuswidelyapplieddiagnosisneurodegenerativediseasesManymentalinvolvesharpdeclinecognitiveabilitymajorsymptomcausedpatternsseveralconventionalusuallyconstructedpairwisecorrelationsdifferentapproachcharacterizehigh-ordermanyworkingtogetherRecentneuroscienceresearchsuggestsanalysisHyper-networksrepresentextractslocalpropertiesaffectsevaluationreducesclassifierproblemcompensatedfeature-basedsensitiveConsideringfeatureextractionmethodsresultlossproposenovelmachineusesmulti-kernelSVMretainstopologicalalsosensitivitycertify28normalcontrolsubjects38patientsselectedparticipateexperimentachievedsatisfactoryaccuracyaverage9160%includedbilateralprecuneusparahippocampalgyrus\hippocampusposteriorcingulategyrusknowncombiningdataobtainsbetterLearningClassificationCombiningMultipleFeaturesHyper-NetworkDataDiseasediscriminativemulti-feature

Similar Articles

Cited By