pH Stress-Induced Cooperation between YYL and MLY1 in Biodegradation of Tetrahydrofuran.

Zubi Liu, Zhixing He, Hui Huang, Xuebin Ran, Adebanjo O Oluwafunmilayo, Zhenmei Lu
Author Information
  1. Zubi Liu: College of Life Sciences, Zhejiang University, Hangzhou, China.
  2. Zhixing He: College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
  3. Hui Huang: College of Life Sciences, Zhejiang University, Hangzhou, China.
  4. Xuebin Ran: College of Life Sciences, Zhejiang University, Hangzhou, China.
  5. Adebanjo O Oluwafunmilayo: College of Life Sciences, Zhejiang University, Hangzhou, China.
  6. Zhenmei Lu: College of Life Sciences, Zhejiang University, Hangzhou, China.

Abstract

Microbial consortia consisting of cooperational strains exhibit biodegradation performance superior to that of single microbial strains and improved remediation efficiency by relieving the environmental stress. Tetrahydrofuran (THF), a universal solvent widely used in chemical and pharmaceutical synthesis, significantly affects the environment. As a refractory pollutant, THF can be degraded by some microbial strains under suitable conditions. There are often a variety of stresses, especially pH stress, that inhibit the THF-degradation efficiency of microbial consortia. Therefore, it is necessary to study the molecular mechanisms of microbial cooperational degradation of THF. In this study, under conditions of low pH (initial pH = 7.0) stress, a synergistic promotion of the THF degradation capability of the strain YYL was found in the presence of a non-THF degrading strain MLY1. Metatranscriptome analysis revealed that the low pH stress induced the strain YYL to up-regulate the genes involved in anti-oxidation, mutation, steroid and bile acid metabolism, and translation, while simultaneously down-regulating the genes involved in ATP production. In the co-culture system, strain MLY1 provides fatty acids, ATP, and amino acids for strain YYL in response to low pH stress during THF degradation. In return, YYL shares the metabolic intermediates of THF with MLY1 as carbon sources. This study provides the preliminary mechanism to understand how microbial consortia improve the degradation efficiency of refractory furan pollutants under environmental stress conditions.

Keywords

References

  1. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9 [PMID: 1608980]
  2. J Hazard Mater. 2011 May 15;189(1-2):486-94 [PMID: 21414720]
  3. Bioresour Technol. 2010 Aug;101(16):6461-7 [PMID: 20381342]
  4. Environ Sci Technol. 2006 Dec 1;40(23):7305-11 [PMID: 17180982]
  5. Appl Environ Microbiol. 2014 May;80(9):2656-64 [PMID: 24532074]
  6. Bioinformatics. 2005 Dec 15;21(24):4378-83 [PMID: 16234321]
  7. Curr Genet. 2016 Aug;62(3):643-56 [PMID: 26832142]
  8. Drug Chem Toxicol. 2001 Aug;24(3):201-19 [PMID: 11452395]
  9. Can J Microbiol. 2011 Mar;57(3):155-68 [PMID: 21358756]
  10. Environ Technol. 2009 Mar;30(3):291-9 [PMID: 19438062]
  11. Front Microbiol. 2017 Apr 24;8:673 [PMID: 28484434]
  12. Pflugers Arch. 2009 Jan;457(3):573-9 [PMID: 18458946]
  13. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  14. Mol Microbiol. 1999 Sep;33(6):1152-61 [PMID: 10510230]
  15. Trends Biotechnol. 2012 Jan;30(1):26-36 [PMID: 21782265]
  16. Environ Microbiol. 2010 Dec;12(12):3089-104 [PMID: 20860734]
  17. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  18. FEMS Microbiol Lett. 2000 May 15;186(2):301-6 [PMID: 10802188]
  19. Sci Rep. 2015 Nov 23;5:16597 [PMID: 26593439]
  20. Sci Rep. 2016 Feb 15;6:21026 [PMID: 26877149]
  21. Prikl Biokhim Mikrobiol. 2007 Jan-Feb;43(1):5-18 [PMID: 17345852]
  22. FEMS Microbiol Lett. 1997 Feb 15;147(2):173-80 [PMID: 9119190]
  23. ISME J. 2015 Aug;9(8):1710-22 [PMID: 25615435]
  24. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  25. Bioresour Technol. 2009 Jun;100(11):2762-9 [PMID: 19230656]
  26. Fundam Appl Toxicol. 1990 Feb;14(2):338-45 [PMID: 2318358]
  27. Nat Commun. 2015 Feb 23;6:6283 [PMID: 25704114]
  28. J Biol Chem. 1986 Jan 15;261(2):627-30 [PMID: 2416756]
  29. ISME J. 2011 Jul;5(7):1133-42 [PMID: 21326336]
  30. J Hazard Mater. 2010 Jul 15;179(1-3):72-8 [PMID: 20346583]
  31. Microbiol Rev. 1993 Jun;57(2):451-509 [PMID: 8336675]
  32. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  33. J Hazard Mater. 2013 Oct 15;261:550-8 [PMID: 23994653]
  34. J Biosci. 2007 Apr;32(3):447-56 [PMID: 17536164]
  35. Appl Microbiol Biotechnol. 2012 Aug;95(4):861-70 [PMID: 22733114]
  36. J Bacteriol. 2004 Dec;186(24):8524-8 [PMID: 15576803]
  37. PLoS One. 2015 Oct 01;10(10):e0139467 [PMID: 26426997]
  38. J Proteome Res. 2013 Mar 1;12(3):1188-98 [PMID: 23360181]
  39. J Ind Microbiol Biotechnol. 2003 Dec;30(12):705-14 [PMID: 14666425]
  40. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  41. BMC Bioinformatics. 2010 Jun 02;11:299 [PMID: 20525223]
  42. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  43. J Hazard Mater. 2010 Apr 15;176(1-3):262-8 [PMID: 19959291]
  44. Adv Appl Microbiol. 2006;59:1-29 [PMID: 16829254]
  45. Mol Microbiol. 2016 Oct;102(2):260-273 [PMID: 27381174]
  46. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  47. Curr Opin Cell Biol. 2008 Apr;20(2):222-6 [PMID: 18356035]
  48. J Mol Microbiol Biotechnol. 2012;22(5):312-6 [PMID: 23147387]
  49. Genome Res. 1999 Sep;9(9):868-77 [PMID: 10508846]
  50. Appl Microbiol Biotechnol. 2016 Sep;100(17 ):7741-50 [PMID: 27178182]
  51. Res Microbiol. 2004 Nov;155(9):761-9 [PMID: 15501654]
  52. Microbiol Mol Biol Rev. 2003 Sep;67(3):429-53, table of contents [PMID: 12966143]

Word Cloud

Created with Highcharts 10.0.0stresspHTHFYYLmicrobialdegradationstrainMLY1lowconsortiastrainsefficiencyconditionsstudycooperationalenvironmentalTetrahydrofuranrefractorygenesinvolvedATPprovidesacidsMicrobialconsistingexhibitbiodegradationperformancesuperiorsingleimprovedremediationrelievinguniversalsolventwidelyusedchemicalpharmaceuticalsynthesissignificantlyaffectsenvironmentpollutantcandegradedsuitableoftenvarietystressesespeciallyinhibitTHF-degradationThereforenecessarymolecularmechanismsinitial=70synergisticpromotioncapabilityfoundpresencenon-THFdegradingMetatranscriptomeanalysisrevealedinducedup-regulateanti-oxidationmutationsteroidbileacidmetabolismtranslationsimultaneouslydown-regulatingproductionco-culturesystemfattyaminoresponsereturnsharesmetabolicintermediatescarbonsourcespreliminarymechanismunderstandimprovefuranpollutantsStress-InducedCooperationBiodegradationBacilluscereusRhodococcusrubercooperationmetatranscriptometetrahydrofuran

Similar Articles

Cited By