Genome-Wide Search for Competing Endogenous RNAs Responsible for the Effects Induced by Ebola Virus Replication and Transcription Using a trVLP System.

Zhong-Yi Wang, Zhen-Dong Guo, Jia-Ming Li, Zong-Zheng Zhao, Ying-Ying Fu, Chun-Mao Zhang, Yi Zhang, Li-Na Liu, Jun Qian, Lin-Na Liu
Author Information
  1. Zhong-Yi Wang: Academy of Military Medical Sciences, Beijing, China.
  2. Zhen-Dong Guo: Academy of Military Medical Sciences, Beijing, China.
  3. Jia-Ming Li: Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.
  4. Zong-Zheng Zhao: Academy of Military Medical Sciences, Beijing, China.
  5. Ying-Ying Fu: Academy of Military Medical Sciences, Beijing, China.
  6. Chun-Mao Zhang: Academy of Military Medical Sciences, Beijing, China.
  7. Yi Zhang: Academy of Military Medical Sciences, Beijing, China.
  8. Li-Na Liu: Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.
  9. Jun Qian: Academy of Military Medical Sciences, Beijing, China.
  10. Lin-Na Liu: Academy of Military Medical Sciences, Beijing, China.

Abstract

Understanding how infected cells respond to Ebola virus (EBOV) and how this response changes during the process of viral replication and transcription are very important for establishing effective antiviral strategies. In this study, we conducted a genome-wide screen to identify long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), micro RNAs (miRNAs), and mRNAs differentially expressed during replication and transcription using a tetracistronic transcription and replication-competent virus-like particle (trVLP) system that models the life cycle of EBOV in 293T cells. To characterize the expression patterns of these differentially expressed RNAs, we performed a series cluster analysis, and up- or down-regulated genes were selected to establish a gene co-expression network. Competing endogenous RNA (ceRNA) networks based on the RNAs responsible for the effects induced by EBOV replication and transcription in human cells, including circRNAs, lncRNAs, miRNAs, and mRNAs, were constructed for the first time. Based on these networks, the interaction details of circRNA-chr19 were explored. Our results demonstrated that circRNA-chr19 targeting miR-30b-3p regulated CLDN18 expression by functioning as a ceRNA. These findings may have important implications for further studies of the mechanisms of EBOV replication and transcription. These RNAs potentially have important functions and may be promising targets for EBOV therapy.

Keywords

References

  1. J Cell Mol Med. 2014 Jun;18(6):991-1003 [PMID: 24702795]
  2. Methods Mol Biol. 2017;1628:119-131 [PMID: 28573615]
  3. Science. 2001 Sep 14;293(5537):2087-92 [PMID: 11557892]
  4. Nature. 2014 Jan 16;505(7483):344-52 [PMID: 24429633]
  5. Sci Rep. 2015 May 26;5:9912 [PMID: 26011078]
  6. J Infect Dev Ctries. 2016 Jun 30;10 (6):626-34 [PMID: 27367012]
  7. Science. 2002 Aug 30;297(5586):1551-5 [PMID: 12202830]
  8. Cancer Cell. 2002 Nov;2(5):353-61 [PMID: 12450790]
  9. Sci Rep. 2016 Apr 21;6:24496 [PMID: 27098369]
  10. PLoS Negl Trop Dis. 2016 Jan 11;10(1):e0004364 [PMID: 26752302]
  11. PLoS One. 2017 Feb 10;12 (2):e0171661 [PMID: 28187158]
  12. Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9121-6 [PMID: 12082179]
  13. Nat Rev Genet. 2012 Mar 13;13(4):271-82 [PMID: 22411466]
  14. PLoS One. 2008;3(12):e3911 [PMID: 19081792]
  15. BMC Genomics. 2015;16 Suppl 4:S1 [PMID: 25917195]
  16. Sci China Life Sci. 2014 Oct;57(10):985-6 [PMID: 25234109]
  17. Biochem Biophys Res Commun. 2017 Apr 8;485(3):569-576 [PMID: 27913295]
  18. J Vis Exp. 2014 Sep 27;(91):52381 [PMID: 25285674]
  19. Nature. 2016 Jul 7;535(7610):169-172 [PMID: 27362232]
  20. Sci Rep. 2016 Apr 12;6:24179 [PMID: 27067649]
  21. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7112-3 [PMID: 23620514]
  22. Cell. 2011 Aug 5;146(3):353-8 [PMID: 21802130]
  23. Sci Rep. 2016 Oct 07;6:34589 [PMID: 27713552]
  24. Cell Rep. 2015 Jul 14;12(2):272-85 [PMID: 26146084]
  25. Sci China Life Sci. 2014 Oct;57(10):973-81 [PMID: 25266153]
  26. Scand J Gastroenterol. 2013 Jan;48(1):58-69 [PMID: 23205909]
  27. Pflugers Arch. 2017 Jan;469(1):35-44 [PMID: 27888337]
  28. J Autoimmun. 2014 Dec;55:1-9 [PMID: 25260583]
  29. RNA. 2010 Nov;16(11):2043-50 [PMID: 20855538]
  30. Cell Mol Life Sci. 2016 Oct;73(19):3733-44 [PMID: 27094387]
  31. Sci China Life Sci. 2014 Oct;57(10):959-72 [PMID: 25218824]

MeSH Term

Ebolavirus
Gene Expression Profiling
Gene Expression Regulation
Gene Regulatory Networks
HEK293 Cells
Hemorrhagic Fever, Ebola
Host-Pathogen Interactions
Humans
MicroRNAs
RNA
RNA, Circular
RNA, Long Noncoding
RNA, Messenger
Sequence Analysis, RNA
Virus Replication

Chemicals

MicroRNAs
RNA, Circular
RNA, Long Noncoding
RNA, Messenger
RNA

Word Cloud

Created with Highcharts 10.0.0RNAsEBOVtranscriptionreplicationcellsimportantEbolavirusresponsechangeslncRNAscircRNAsmiRNAsmRNAsdifferentiallyexpressedtrVLPexpressionnetworkCompetingendogenousRNAceRNAnetworkscircRNA-chr19mayUnderstandinginfectedrespondprocessviralestablishingeffectiveantiviralstrategiesstudyconductedgenome-widescreenidentifylongnon-codingcircularmicrousingtetracistronicreplication-competentvirus-likeparticlesystemmodelslifecycle293Tcharacterizepatternsperformedseriesclusteranalysisup-down-regulatedgenesselectedestablishgeneco-expressionbasedresponsibleeffectsinducedhumanincludingconstructedfirsttimeBasedinteractiondetailsexploredresultsdemonstratedtargetingmiR-30b-3pregulatedCLDN18functioningfindingsimplicationsstudiesmechanismspotentiallyfunctionspromisingtargetstherapyGenome-WideSearchEndogenousResponsibleEffectsInducedVirusReplicationTranscriptionUsingSystemcellularcircRNAcompetingebolalncRNAmicroRNA

Similar Articles

Cited By