Phagosomal transport depends strongly on phagosome size.

S Keller, K Berghoff, H Kress
Author Information
  1. S Keller: Department of Physics, University of Bayreuth, Universitaetsstrasse 30, D-95440, Bayreuth, Germany. steve.keller@uni-bayreuth.de.
  2. K Berghoff: Department of Physics, University of Bayreuth, Universitaetsstrasse 30, D-95440, Bayreuth, Germany.
  3. H Kress: Department of Physics, University of Bayreuth, Universitaetsstrasse 30, D-95440, Bayreuth, Germany.

Abstract

Macrophages internalize pathogens for intracellular degradation. An important part of this process is the phagosomal transport from the cell periphery to the perinuclear region. Biochemical factors are known to influence the fate of phagosomes. Here, we show that the size of phagosomes also has a strong influence on their transport. We found that large phagosomes are transported persistently to the nucleus, whereas small phagosomes show strong bidirectional transport. We show that dynein motors play a larger role in the transport of large phagosomes, whereas actin filament-based motility plays a larger role in the transport of small phagosomes. Furthermore, we investigated the spatial distribution of dyneins and microtubules around phagosomes and hypothesize that dynein and microtubule density differences between the nucleus-facing side of phagosomes and the opposite side could explain part of the observed transport characteristics. Our findings suggest that a size-dependent cellular sorting mechanism might exist that supports macrophages in their immunological roles.

References

  1. Trends Microbiol. 2001 Jun;9(6):273-8 [PMID: 11390242]
  2. J Cell Biol. 1997 Apr 7;137(1):113-29 [PMID: 9105041]
  3. Biotechnol Bioeng. 2008 Sep 1;101(1):1-8 [PMID: 18646216]
  4. Exp Cell Res. 1998 Jul 10;242(1):265-73 [PMID: 9665824]
  5. PLoS One. 2010 Apr 06;5(4):e10051 [PMID: 20386614]
  6. Neuron. 1996 Apr;16(4):769-82 [PMID: 8607995]
  7. Nat Rev Mol Cell Biol. 2008 Oct;9(10):781-95 [PMID: 18813294]
  8. PLoS One. 2013 Sep 06;8(9):e73389 [PMID: 24039928]
  9. PLoS One. 2013 Apr 22;8(4):e60989 [PMID: 23630577]
  10. Cell. 2013 Jan 17;152(1-2):172-82 [PMID: 23332753]
  11. Biophys J. 2009 Jan;96(1):248-54 [PMID: 18835898]
  12. Front Biosci. 2006 May 01;11:1479-90 [PMID: 16368530]
  13. Sci Rep. 2017 Jun 15;7(1):3558 [PMID: 28620230]
  14. J Cell Sci. 1989 Sep;94 ( Pt 1):143-53 [PMID: 2693471]
  15. Nat Cell Biol. 2000 Jan;2(1):20-4 [PMID: 10620802]
  16. Opt Lett. 1999 May 1;24(9):608-10 [PMID: 18073798]
  17. Nat Rev Microbiol. 2009 May;7(5):355-66 [PMID: 19369951]
  18. Curr Biol. 2006 Nov 7;16(21):2156-60 [PMID: 17084701]
  19. Nat Rev Immunol. 2008 Jan;8(1):34-47 [PMID: 18064051]
  20. Opt Express. 2009 Apr 13;17(8):6209-17 [PMID: 19365444]
  21. Curr Biol. 2006 Nov 7;16(21):2161-5 [PMID: 17084702]
  22. Nat Rev Mol Cell Biol. 2006 Dec;7(12):897-908 [PMID: 17139330]
  23. Immunol Rev. 2005 Oct;207:158-65 [PMID: 16181334]
  24. J Cell Biol. 2002 Mar 4;156(5):855-65 [PMID: 11864991]
  25. Bioessays. 2000 Mar;22(3):255-63 [PMID: 10684585]
  26. J Cell Sci. 1998 Feb;111 ( Pt 3):303-12 [PMID: 9427679]
  27. Front Cell Neurosci. 2015 Jul 06;9:252 [PMID: 26217180]
  28. Neuron. 1995 Apr;14(4):763-71 [PMID: 7536426]
  29. Pharm Res. 2008 Aug;25(8):1815-21 [PMID: 18373181]
  30. Trends Cell Biol. 1995 May;5(5):183-6 [PMID: 14731444]
  31. Nat Rev Immunol. 2012 Jun 15;12(7):492-502 [PMID: 22699831]
  32. Mol Biol Cell. 2001 Sep;12(9):2742-55 [PMID: 11553713]
  33. Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49 [PMID: 18612320]
  34. J Immunol. 1999 Jun 1;162(11):6784-91 [PMID: 10352299]
  35. J Cell Biol. 2008 Dec 15;183(6):999-1005 [PMID: 19075110]
  36. J Cell Biol. 1987 Oct;105(4):1473-8 [PMID: 3312229]
  37. Cell. 2016 Feb 11;164(4):722-34 [PMID: 26853472]
  38. Cytoskeleton (Hoboken). 2015 Apr;72(4):182-92 [PMID: 25809136]
  39. Curr Opin Cell Biol. 2003 Aug;15(4):498-503 [PMID: 12892792]
  40. Soft Matter. 2007 Feb 14;3(3):337-348 [PMID: 32900150]
  41. Cell Motil Cytoskeleton. 2002 Oct;53(2):81-8 [PMID: 12211106]
  42. Curr Biol. 2005 Dec 6;15(23):2075-85 [PMID: 16332532]
  43. Biochem J. 2002 Sep 15;366(Pt 3):689-704 [PMID: 12061891]
  44. Nat Immunol. 2006 Oct;7(10):1029-35 [PMID: 16985500]
  45. Methods Enzymol. 2003;360:416-46 [PMID: 12622162]
  46. J Membr Biol. 2003 Jun 1;193(3):137-52 [PMID: 12962275]

MeSH Term

Animals
Biological Transport
Cell Line
Cytochalasin D
Dyneins
Macrophages
Magnetics
Mice
Microtubules
Phagocytosis
Phagosomes
Quinazolinones

Chemicals

Quinazolinones
ciliobrevin A
Cytochalasin D
Dyneins

Word Cloud

Created with Highcharts 10.0.0phagosomestransportshowpartinfluencesizestronglargewhereassmalldyneinlargerrolesideMacrophagesinternalizepathogensintracellulardegradationimportantprocessphagosomalcellperipheryperinuclearregionBiochemicalfactorsknownfatealsofoundtransportedpersistentlynucleusbidirectionalmotorsplayactinfilament-basedmotilityplaysFurthermoreinvestigatedspatialdistributiondyneinsmicrotubulesaroundhypothesizemicrotubuledensitydifferencesnucleus-facingoppositeexplainobservedcharacteristicsfindingssuggestsize-dependentcellularsortingmechanismmightexistsupportsmacrophagesimmunologicalrolesPhagosomaldependsstronglyphagosome

Similar Articles

Cited By