Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.

Clara Pérez-Peinado, Susana Almeida Dias, Marco M Domingues, Aurélie H Benfield, João Miguel Freire, Gandhi Rádis-Baptista, Diana Gaspar, Miguel A R B Castanho, David J Craik, Sónia Troeira Henriques, Ana Salomé Veiga, David Andreu
Author Information
  1. Clara Pérez-Peinado: From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
  2. Susana Almeida Dias: the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
  3. Marco M Domingues: the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
  4. Aurélie H Benfield: the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia.
  5. João Miguel Freire: the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
  6. Gandhi Rádis-Baptista: From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
  7. Diana Gaspar: the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
  8. Miguel A R B Castanho: the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
  9. David J Craik: the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia.
  10. Sónia Troeira Henriques: the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia, s.henriques@imb.uq.edu.au.
  11. Ana Salomé Veiga: the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, aveiga@medicina.ulisboa.pt.
  12. David Andreu: From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain, david.andreu@upf.edu.

Abstract

Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of and cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.

Keywords

Associated Data

PDB | 2MWT

References

  1. Amino Acids. 2017 Jun 7;:null [PMID: 28593346]
  2. Biochim Biophys Acta. 2016 Sep;1858(9):1974-1982 [PMID: 27216315]
  3. Cell Mol Life Sci. 2003 Mar;60(3):536-49 [PMID: 12737313]
  4. Peptides. 2008 Oct;29(10):1685-91 [PMID: 18620012]
  5. J Biol Chem. 2006 Feb 3;281(5):2858-67 [PMID: 16326712]
  6. J Biol Chem. 2011 Jul 8;286(27):24231-41 [PMID: 21576247]
  7. Biochim Biophys Acta. 2013 Mar;1828(3):944-55 [PMID: 23246973]
  8. Curr Protein Pept Sci. 2013 Sep;14(6):504-14 [PMID: 23968350]
  9. Biophys J. 2003 May;84(5):3061-78 [PMID: 12719237]
  10. J Biol Chem. 2010 Apr 2;285(14):10797-805 [PMID: 20103593]
  11. Curr Protein Pept Sci. 2005 Feb;6(1):23-34 [PMID: 15638766]
  12. Antimicrob Agents Chemother. 2011 Jul;55(7):3446-52 [PMID: 21518845]
  13. ACS Chem Biol. 2014 Sep 19;9(9):2003-7 [PMID: 25058470]
  14. Biochim Biophys Acta. 2004 Dec 15;1667(2):222-8 [PMID: 15581859]
  15. Biochim Biophys Acta. 2015 Feb;1848(2):554-60 [PMID: 25445678]
  16. PLoS One. 2011;6(8):e24030 [PMID: 21912615]
  17. J Biol Chem. 2015 Jul 3;290(27):16633-52 [PMID: 26013823]
  18. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  19. Peptides. 2011 Jun;32(6):1131-8 [PMID: 21515321]
  20. J Biol Chem. 2009 Jul 31;284(31):20699-707 [PMID: 19491108]
  21. J Med Chem. 2015 Nov 12;58(21):8553-63 [PMID: 26465972]
  22. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  23. J Med Chem. 2016 Mar 10;59(5):1791-9 [PMID: 26881456]
  24. Antimicrob Agents Chemother. 2017 Aug 24;61(9): [PMID: 28630199]
  25. Microbiol Res. 2016 Oct;191:51-80 [PMID: 27524653]
  26. Acc Chem Res. 2016 Jun 21;49(6):1130-8 [PMID: 27187572]
  27. Front Public Health. 2014 Sep 16;2:145 [PMID: 25279369]
  28. Front Microbiol. 2017 May 04;8:775 [PMID: 28522994]
  29. Amino Acids. 2014 Nov;46(11):2561-71 [PMID: 25100358]
  30. Biophys J. 2008 Aug;95(4):1877-89 [PMID: 18469080]
  31. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 [PMID: 18216768]
  32. FEBS J. 2014 Jan;281(1):191-215 [PMID: 24286593]
  33. Trends Mol Med. 2007 Jun;13(6):260-7 [PMID: 17493872]
  34. Front Neurosci. 2017 Feb 14;11:73 [PMID: 28261050]
  35. Biochemistry. 2009 May 19;48(19):4198-208 [PMID: 19301918]
  36. Mol Biol Rep. 2012 Dec;39(12):10957-70 [PMID: 23065264]
  37. PLoS One. 2011;6(7):e22120 [PMID: 21789223]
  38. Expert Opin Pharmacother. 2015 Feb;16(2):159-77 [PMID: 25496207]
  39. J Biol Chem. 2012 Sep 28;287(40):33629-43 [PMID: 22854971]
  40. PLoS Negl Trop Dis. 2015 Jul 21;9(7):e0003862 [PMID: 26196513]
  41. Biochim Biophys Acta. 2006 Sep;1758(9):1408-25 [PMID: 16716248]
  42. Nat Biotechnol. 2006 Dec;24(12):1551-7 [PMID: 17160061]
  43. J Pept Sci. 2008 Apr;14(4):394-400 [PMID: 18189339]
  44. J Pept Sci. 2013 Mar;19(3):173-80 [PMID: 23389882]
  45. Peptides. 2003 Nov;24(11):1655-67 [PMID: 15019197]
  46. Peptides. 2010 Aug;31(8):1488-93 [PMID: 20576537]
  47. Int J Biochem Cell Biol. 2017 Feb;83:71-75 [PMID: 28013149]
  48. Appl Microbiol Biotechnol. 2016 Dec;100(24):10251-10263 [PMID: 27837316]
  49. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414 [PMID: 20452953]
  50. J Antibiot (Tokyo). 2017 Mar;70(3):231-237 [PMID: 27876749]
  51. Pharmacol Rev. 2003 Mar;55(1):27-55 [PMID: 12615953]
  52. Appl Environ Microbiol. 2008 Nov;74(22):6980-6 [PMID: 18820073]
  53. J Bacteriol. 2000 Feb;182(4):1172-5 [PMID: 10648548]
  54. Infect Dis Clin North Am. 2009 Dec;23(4):791-815, vii [PMID: 19909885]
  55. Biochim Biophys Acta. 2015 Oct;1848(10 Pt A):2394-405 [PMID: 26205847]
  56. Biophys J. 2017 Apr 25;112(8):1663-1672 [PMID: 28445757]
  57. Trends Pharmacol Sci. 2010 Nov;31(11):509-15 [PMID: 20843562]
  58. Biochemistry. 1966 Jan;5(1):365-85 [PMID: 5938952]
  59. Curr Opin Hematol. 2008 May;15(3):191-5 [PMID: 18391783]
  60. J Biol Chem. 2010 Sep 3;285(36):27536-44 [PMID: 20566635]

MeSH Term

Animals
Anti-Bacterial Agents
Cell Membrane
Cell Membrane Permeability
Crotalid Venoms
Crotalus
Escherichia coli
Peptide Fragments
Pseudomonas aeruginosa
Surface Plasmon Resonance

Chemicals

Anti-Bacterial Agents
Crotalid Venoms
Peptide Fragments
crotalicidin

Word Cloud

Created with Highcharts 10.0.0Ctn15-34bacterialmembraneantimicrobialpeptidescellssurfacemicroscopymechanismscellconfirmedpeptidevenomrattlesnakeantitumorfragmentactionGram-negativebacteriabactericidalsuggestedcytometrydifferentpermeabilizationplasmonresonancevesiclesmembranesforceconfocalCrotalicidincathelicidin-relatedSouthAmericanpossessespotentantifungalpropertiesPreviouslyshownC-terminalretainsactivitieslesstoxichealthyimprovedserumstabilityinvestigatedkilling∼90%within90-1205-30minrespectivelyStudiesζpotentialaccumulateneutralizenegativechargesFlowexperimentspermeabilizeslightlypermeabilizedimmediatelyuponadditionwhereaslagphaseinducingdamageexhibitedcomplexcell-killingactivityprobablytwomodesUsingleakageassaysmodelbindsdisruptslipidalsoobservedpreferencemimictumorAtomicvisualizedeffectlocalizationstudiesshedlightontosuggestingpromisingleaddevelopmentantibacterial/antitumoragentMechanismscrotalicidinAMPatomicAFMdisruptionmechanismSPRtime-resolvedflow

Similar Articles

Cited By