A Drosophila ex vivo model of olfactory appetitive learning.

Ema Suzuki-Sawano, Kohei Ueno, Shintaro Naganos, Yoshihiro Sawano, Junjiro Horiuchi, Minoru Saitoe
Author Information
  1. Ema Suzuki-Sawano: Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa Setagaya, Tokyo, 156-8506, Japan.
  2. Kohei Ueno: Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa Setagaya, Tokyo, 156-8506, Japan.
  3. Shintaro Naganos: Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa Setagaya, Tokyo, 156-8506, Japan.
  4. Yoshihiro Sawano: Department of Mathematics and Information Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo, 192-0397, Japan.
  5. Junjiro Horiuchi: Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa Setagaya, Tokyo, 156-8506, Japan.
  6. Minoru Saitoe: Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa Setagaya, Tokyo, 156-8506, Japan. saito-mn@igakuken.or.jp. ORCID

Abstract

During olfactory appetitive learning, animals associate an odor, or conditioned stimulus (CS), with an unconditioned stimulus (US), often a sugar reward. This association induces feeding behavior, a conditioned response (CR), upon subsequent exposure to the CS. In this study, we developed a model of this behavior in isolated Drosophila brains. Artificial activation of neurons expressing the Gr5a sugar-responsive gustatory receptor (Gr5a GRNs) induces feeding behavior in starved flies. Consistent with this, we find that in dissected brains, activation of Gr5a GRNs induces Ca transients in motor neurons, MN11 + 12, required for ingestion. Significantly, activation of Gr5a GRNs can substitute for presentation of sugar rewards during olfactory appetitive learning. Similarly, in dissected brains, coincident stimulation of Gr5a GRNs and the antennal lobe (AL), which processes olfactory information, results in increased Ca influx into MN11 + 12 cells upon subsequent AL stimulation. Importantly, olfactory appetitive associations are not formed in satiated flies. Likewise, AL-evoked Ca transients in MN11 + 12 are not produced in ex vivo brains from satiated flies. Our results suggest that a starved/satiated state is maintained in dissected brains, and that this ex vivo system will be useful for identification of neural networks involved in olfactory appetitive learning.

References

  1. PLoS One. 2013 Oct 18;8(10):e77724 [PMID: 24204935]
  2. Cell. 2004 Jun 25;117(7):981-91 [PMID: 15210117]
  3. Oncogene. 1996 Apr 18;12(8):1827-31 [PMID: 8622904]
  4. J Neurosci. 2006 Jun 7;26(23):6143-52 [PMID: 16763022]
  5. Nature. 2012 Dec 20;492(7429):433-7 [PMID: 23103875]
  6. Cell. 2015 Dec 17;163(7):1742-55 [PMID: 26687359]
  7. Nat Neurosci. 2001 Dec;4(12):1182-6 [PMID: 11704765]
  8. Cell. 2009 Oct 16;139(2):416-27 [PMID: 19837040]
  9. Neuron. 2015 Dec 2;88(5):985-998 [PMID: 26637800]
  10. Nature. 2013 Jul 4;499(7456):83-7 [PMID: 23748445]
  11. Curr Biol. 2007 May 15;17 (10 ):905-8 [PMID: 17493811]
  12. Neuron. 2006 Dec 7;52(5):845-55 [PMID: 17145505]
  13. Nat Neurosci. 2011 Jun 19;14 (7):903-10 [PMID: 21685917]
  14. J Comp Physiol A. 1985 Sep;157(2):263-77 [PMID: 3939242]
  15. Nat Methods. 2014 Mar;11(3):325-32 [PMID: 24363022]
  16. J Neurosci Methods. 2012 Oct 15;211(1):159-67 [PMID: 22960052]
  17. Nature. 2012 Aug 23;488(7412):512-6 [PMID: 22810589]
  18. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6307-12 [PMID: 22474379]
  19. Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14526-30 [PMID: 14523229]
  20. J Neurosci. 2015 Apr 15;35(15):5950-8 [PMID: 25878268]
  21. Nat Methods. 2009 Dec;6(12):875-81 [PMID: 19898485]
  22. Nat Neurosci. 2012 Feb 26;15(4):592-9 [PMID: 22366756]
  23. Genes Brain Behav. 2009 Jun;8(4):407-15 [PMID: 19220480]
  24. Elife. 2017 Jan 24;6:null [PMID: 28117664]
  25. J Physiol. 2013 Jan 1;591(1):287-302 [PMID: 23027817]
  26. J Comp Physiol A. 1994 Aug;175(2):179-91 [PMID: 8071894]
  27. J Neurosci. 2008 Apr 23;28(17):4368-76 [PMID: 18434515]
  28. J Neurosci. 2008 Mar 19;28(12 ):3103-13 [PMID: 18354013]
  29. Science. 2004 Jan 16;303(5656):366-70 [PMID: 14684826]
  30. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Dec;192(12):1335-48 [PMID: 16964495]
  31. Neuron. 2009 Feb 12;61(3):373-84 [PMID: 19217375]
  32. Curr Biol. 2001 Sep 18;11(18):1451-5 [PMID: 11566105]
  33. Cell. 2005 Dec 2;123(5):945-57 [PMID: 16325586]
  34. Neuron. 2003 Dec 4;40(5):1003-11 [PMID: 14659098]

MeSH Term

Animals
Appetitive Behavior
Conditioning, Classical
Drosophila
Drosophila Proteins
Feeding Behavior
Neurons
Odorants
Olfactory Cortex
Olfactory Pathways
Receptors, Cell Surface
Reward
Smell
Taste

Chemicals

Drosophila Proteins
Receptors, Cell Surface
gustatory receptor, Drosophila

Word Cloud

Created with Highcharts 10.0.0olfactoryappetitivebrainsGr5alearningGRNsinducesbehavioractivationfliesdissectedCaMN11 + 12exvivoconditionedstimulusCSsugarfeedinguponsubsequentmodelDrosophilaneuronstransientsstimulationALresultssatiatedanimalsassociateodorunconditionedUSoftenrewardassociationresponseCRexposurestudydevelopedisolatedArtificialexpressingsugar-responsivegustatoryreceptorstarvedConsistentfindmotorrequiredingestionSignificantlycansubstitutepresentationrewardsSimilarlycoincidentantennallobeprocessesinformationincreasedinfluxcellsImportantlyassociationsformedLikewiseAL-evokedproduced insuggeststarved/satiatedstatemaintainedsystemwillusefulidentificationneuralnetworksinvolved

Similar Articles

Cited By