Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity.

Jheng-Yu Wu, Shengyan Xiang, Mu Zhang, Bin Fang, He Huang, Oh Kwang Kwon, Yingming Zhao, Zhe Yang, Wenlong Bai, Gerold Bepler, Xiaohong Mary Zhang
Author Information
  1. Jheng-Yu Wu: From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201.
  2. Shengyan Xiang: the Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612.
  3. Mu Zhang: From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201.
  4. Bin Fang: The Proteomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612.
  5. He Huang: the Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, and.
  6. Oh Kwang Kwon: the Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, and.
  7. Yingming Zhao: the Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, and.
  8. Zhe Yang: the Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201.
  9. Wenlong Bai: the Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612.
  10. Gerold Bepler: From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201.
  11. Xiaohong Mary Zhang: From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201, zhangx@karmanos.org.

Abstract

Histone deacetylase 6 (HDAC6), a class IIb HDAC, plays an important role in many biological and pathological processes. Previously, we found that ERK1, a downstream kinase in the mitogen-activated protein kinase signaling pathway, phosphorylates HDAC6, thereby increasing HDAC6-mediated deacetylation of α-tubulin. However, whether HDAC6 reciprocally modulates ERK1 activity is unknown. Here, we report that both ERK1 and -2 are acetylated and that HDAC6 promotes ERK1 activity via deacetylation. Briefly, we found that both ERK1 and -2 physically interact with HDAC6. Endogenous ERK1/2 acetylation levels increased upon treatment with a pan-HDAC inhibitor, an HDAC6-specific inhibitor, or depletion of HDAC6, suggesting that HDAC6 deacetylates ERK1/2. We also noted that the acetyltransferases CREB-binding protein and p300 both can acetylate ERK1/2. Acetylated ERK1 exhibits reduced enzymatic activity toward the transcription factor ELK1, a well-known ERK1 substrate. Furthermore, mass spectrometry analysis indicated Lys-72 as an acetylation site in the ERK1 N terminus, adjacent to Lys-71, which binds to ATP, suggesting that acetylation status of Lys-72 may affect ERK1 ATP binding. Interestingly, an acetylation-mimicking ERK1 mutant (K72Q) exhibited less phosphorylation than the WT enzyme and a deacetylation-mimicking mutant (K72R). Of note, the K72Q mutant displayed decreased enzymatic activity in an kinase assay and in a cellular luciferase assay compared with the WT and K72R mutant. Taken together, our findings suggest that HDAC6 stimulates ERK1 activity. Along with our previous report that ERK1 promotes HDAC6 activity, we propose that HDAC6 and ERK1 may form a positive feed-forward loop, which might play a role in cancer.

Keywords

Associated Data

PDB | 2ZOQ

References

  1. Science. 2002 Dec 6;298(5600):1911-2 [PMID: 12471242]
  2. ACS Chem Biol. 2012 Feb 17;7(2):331-9 [PMID: 22047054]
  3. Growth Factors. 2006 Mar;24(1):21-44 [PMID: 16393692]
  4. Oncol Rep. 2015 Apr;33(4):1899-907 [PMID: 25647264]
  5. Nat Methods. 2013 Jul;10(7):634-7 [PMID: 23749302]
  6. Mol Cell Biol. 2011 Jun;31(11):2349-63 [PMID: 21444723]
  7. Oncogene. 2007 Aug 13;26(37):5310-8 [PMID: 17694074]
  8. J Biol. 2006;5(5):13 [PMID: 16879721]
  9. Science. 1990 Jul 6;249(4964):64-7 [PMID: 2164259]
  10. Cell. 1993 Apr 23;73(2):381-93 [PMID: 8386592]
  11. Pharmacol Res. 2012 Aug;66(2):105-43 [PMID: 22569528]
  12. Cancer Res. 2008 Sep 15;68(18):7561-9 [PMID: 18794144]
  13. Oncotarget. 2016 Oct 25;7(43):69804-69815 [PMID: 27634878]
  14. PLoS One. 2013 Sep 04;8(9):e73401 [PMID: 24023871]
  15. EMBO J. 1995 Mar 1;14(5):951-62 [PMID: 7889942]
  16. Oncotarget. 2015 Apr 20;6(11):9073-85 [PMID: 25940539]
  17. Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a018713 [PMID: 24691964]
  18. Nature. 2002 May 23;417(6887):455-8 [PMID: 12024216]
  19. Nat Rev Mol Cell Biol. 2008 Mar;9(3):206-18 [PMID: 18292778]
  20. J Biol Chem. 2013 Nov 15;288(46):33156-70 [PMID: 24089523]
  21. Mol Cancer Res. 2013 Sep;11(9):1072-7 [PMID: 23723075]
  22. Oncogene. 2007 May 14;26(22):3100-12 [PMID: 17496909]
  23. Nat Rev Mol Cell Biol. 2007 Apr;8(4):284-95 [PMID: 17380162]
  24. Sci Signal. 2016 Aug 30;9(443):rs9 [PMID: 27577262]
  25. Science. 1988 Jul 1;241(4861):42-52 [PMID: 3291115]
  26. J Biol Chem. 2008 May 9;283(19):12686-90 [PMID: 18356165]
  27. Nat Rev Drug Discov. 2014 Dec;13(12):928-42 [PMID: 25435214]
  28. J Biol Chem. 1993 Mar 5;268(7):5097-106 [PMID: 8444886]
  29. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83 [PMID: 21372320]
  30. Oncotarget. 2015 Dec 22;6(41):43162-71 [PMID: 26586479]
  31. Annu Rev Biochem. 2017 Jun 20;86:159-192 [PMID: 28498721]
  32. Annu Rev Biochem. 2001;70:81-120 [PMID: 11395403]
  33. Nat Rev Cancer. 2001 Dec;1(3):194-202 [PMID: 11902574]
  34. Mol Cell. 2011 Oct 21;44(2):325-40 [PMID: 21906983]
  35. J Biol Chem. 2013 Apr 19;288(16):11047-65 [PMID: 23426362]
  36. Biochemistry. 1996 May 7;35(18):5641-6 [PMID: 8639522]
  37. Electrophoresis. 1999 Dec;20(18):3551-67 [PMID: 10612281]
  38. Mol Cell Proteomics. 2011 Oct;10 (10 ):M111.013284 [PMID: 21890473]
  39. Clin Cancer Res. 2007 Feb 15;13(4):1140-8 [PMID: 17317822]
  40. J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 [PMID: 24226387]
  41. Clin Cancer Res. 2015 Jul 15;21(14 ):3230-3240 [PMID: 25813020]
  42. Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 [PMID: 25514926]
  43. Radiother Oncol. 2009 Jul;92(1):125-32 [PMID: 19329208]
  44. Oncogene. 2014 May 29;33(22):2938-46 [PMID: 23770849]
  45. Mol Cell. 2007 Jul 20;27(2):197-213 [PMID: 17643370]
  46. Mol Cell. 2014 Jul 3;55(1):31-46 [PMID: 24882211]

Grants

  1. P30 CA022453/NCI NIH HHS
  2. R01 CA164147/NCI NIH HHS

MeSH Term

Acetylation
Amino Acid Motifs
Animals
Crystallography, X-Ray
Histone Deacetylase 6
Humans
Mice
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Mutation
Phosphorylation
Protein Binding
ets-Domain Protein Elk-1

Chemicals

ELK1 protein, human
ets-Domain Protein Elk-1
MAPK1 protein, human
MAPK3 protein, human
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
HDAC6 protein, human
Histone Deacetylase 6

Word Cloud

Created with Highcharts 10.0.0ERK1HDAC6activitykinasedeacetylaseERK1/2acetylationmutant6proteinhistoneHistoneHDACrolefoundmitogen-activatedtherebydeacetylationreport-2promotesinhibitorsuggestingdeacetylatesenzymaticLys-72ATPmayK72QWTenzymeK72Rassaystimulatesextracellularsignal-regulatedclassIIbplaysimportantmanybiologicalpathologicalprocessesPreviouslydownstreamsignalingpathwayphosphorylatesincreasingHDAC6-mediatedα-tubulinHoweverwhetherreciprocallymodulatesunknownacetylatedviaBrieflyphysicallyinteractEndogenouslevelsincreasedupontreatmentpan-HDACHDAC6-specificdepletionalsonotedacetyltransferasesCREB-bindingp300canacetylateAcetylatedexhibitsreducedtowardtranscriptionfactorELK1well-knownsubstrateFurthermoremassspectrometryanalysisindicatedsiteNterminusadjacentLys-71bindsstatusaffectbindingInterestinglyacetylation-mimickingexhibitedlessphosphorylationdeacetylation-mimickingnotedisplayeddecreasedcellularluciferasecomparedTakentogetherfindingssuggestAlongpreviousproposeformpositivefeed-forwardloopmightplaycancer1mechanismacetylaseMAPKkinase1/2

Similar Articles

Cited By