Reservoir computing using dynamic memristors for temporal information processing.

Chao Du, Fuxi Cai, Mohammed A Zidan, Wen Ma, Seung Hwan Lee, Wei D Lu
Author Information
  1. Chao Du: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
  2. Fuxi Cai: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
  3. Mohammed A Zidan: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
  4. Wen Ma: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
  5. Seung Hwan Lee: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA. ORCID
  6. Wei D Lu: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA. wluee@eecs.umich.edu. ORCID

Abstract

Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function.

References

  1. Neural Netw. 2007 Apr;20(3):391-403 [PMID: 17517492]
  2. Nat Commun. 2013;4:2072 [PMID: 23797631]
  3. Nat Nanotechnol. 2017 Aug;12 (8):784-789 [PMID: 28530717]
  4. Nat Mater. 2017 Jan;16(1):101-108 [PMID: 27669052]
  5. Nat Nanotechnol. 2013 Jan;8(1):13-24 [PMID: 23269430]
  6. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  7. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  8. IEEE Trans Neural Netw. 2000;11(3):697-709 [PMID: 18249797]
  9. Front Neurosci. 2016 Feb 01;9:502 [PMID: 26869876]
  10. ACS Nano. 2011 Sep 27;5(9):7669-76 [PMID: 21861506]
  11. Nat Commun. 2013;4:2382 [PMID: 24008898]
  12. Nat Mater. 2007 Nov;6(11):833-40 [PMID: 17972938]
  13. Nano Lett. 2010 Apr 14;10(4):1297-301 [PMID: 20192230]
  14. Nano Lett. 2015 Mar 11;15(3):2203-11 [PMID: 25710872]
  15. Nature. 2008 May 1;453(7191):80-3 [PMID: 18451858]
  16. Nat Mater. 2011 Jun 26;10(8):591-5 [PMID: 21706012]
  17. Neural Comput. 2015 Mar;27(3):725-47 [PMID: 25602769]
  18. Nat Commun. 2014 Mar 24;5:3541 [PMID: 24662967]
  19. Nanotechnology. 2013 Sep 27;24(38):384004 [PMID: 23999129]
  20. Nat Commun. 2012 Mar 13;3:732 [PMID: 22415823]
  21. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  22. Nature. 2015 May 7;521(7550):61-4 [PMID: 25951284]

Word Cloud

Created with Highcharts 10.0.0dynamictemporalcansystemcomputingfunctionmemristorsReservoirfeaturesreadouttasksexperimentallyreservoirusinginformationusedsystemsutilizereservoirsshort-termmemoryprojectinputshigh-dimensionalfeaturespacelayereffectivelyanalyzeprojectedclassificationtime-seriesanalysisefficientlycomputecomplexdatalow-trainingcostsinceneedstrainedimplementmemristorarrayshowinternalionicprocessesallowmemristor-baseddirectlyprocessdomaindemonstrateevensmallhardware88alreadyhandwrittendigitrecognitionalsosolvesecond-ordernonlineartasksuccessfullypredictexpectedoutputwithoutknowingformoriginaltransferprocessing

Similar Articles

Cited By