Attention Shifts Recruit the Monkey Default Mode Network.

John T Arsenault, Natalie Caspari, Rik Vandenberghe, Wim Vanduffel
Author Information
  1. John T Arsenault: Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, 3000 Leuven, Belgium.
  2. Natalie Caspari: Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, 3000 Leuven, Belgium. ORCID
  3. Rik Vandenberghe: University Hospitals Leuven, Neurology Department, 3000 Leuven, Belgium. ORCID
  4. Wim Vanduffel: Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, 3000 Leuven, Belgium, wim@nmr.mgh.harvard.edu. ORCID

Abstract

A unifying function associated with the default mode network (DMN), which is more active during rest than under active task conditions, has been difficult to define. The DMN is activated during monitoring the external world for unexpected events, as a sentinel, and when humans are engaged in high-level internally focused tasks. The existence of DMN correlates in other species, such as mice, challenge the idea that internally focused, high-level cognitive operations, such as introspection, autobiographical memory retrieval, planning the future, and predicting someone else's thoughts, are evolutionarily preserved defining properties of the DMN. A recent human study demonstrated that demanding cognitive shifts could recruit the DMN, yet it is unknown whether this holds for nonhuman species. Therefore, we tested whether large changes in cognitive context would recruit DMN regions in female and male nonhuman primates. Such changes were measured as displacements of spatial attentional weights based on internal rules of relevance (spatial shifts) compared with maintaining attentional weights at the same location (stay events). Using fMRI in macaques, we detected that a cortical network, activated during shifts, largely overlapped with the DMN. Moreover, fMRI time courses sampled from independently defined DMN foci showed significant shift selectivity during the demanding attention task. Finally, functional clustering based on independent resting state data revealed that DMN and shift regions clustered conjointly, whereas regions activated during the stay events clustered apart. We therefore propose that cognitive shifting in primates generally recruits DMN regions. This might explain a breakdown of the DMN in many neurological diseases characterized by declined cognitive flexibility. Activation of the human default mode network (DMN) can be measured with fMRI when subjects shift thoughts between high-level internally directed cognitive states, when thinking about the self, the perspective of others, when imagining future and past events, and during mind wandering. Furthermore, the DMN is activated as a sentinel, monitoring the environment for unexpected events. Arguably, these cognitive processes have in common fast and substantial changes in cognitive context. As DMN activity has also been reported in nonhuman species, we tested whether shifts in spatial attention activated the monkey DMN. Core monkey DMN and shift-selective regions shared several functional properties, indicating that cognitive shifting, in general, might constitute one of the evolutionarily preserved functions of the DMN.

Keywords

References

  1. Brain. 1999 Mar;122 ( Pt 3):383-404 [PMID: 10094249]
  2. Magn Reson Med. 1999 Sep;42(3):591-8 [PMID: 10467305]
  3. Magn Reson Med. 1999 Nov;42(5):813-28 [PMID: 10542340]
  4. Magn Reson Med. 1999 Nov;42(5):952-62 [PMID: 10542355]
  5. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  6. J Am Med Inform Assoc. 2001 Sep-Oct;8(5):443-59 [PMID: 11522765]
  7. Hum Brain Mapp. 2001 Nov;14(3):140-51 [PMID: 11559959]
  8. Curr Biol. 2001 Oct 2;11(19):1528-30 [PMID: 11591321]
  9. Neuron. 2001 Nov 20;32(4):565-77 [PMID: 11719199]
  10. Science. 2002 Feb 22;295(5559):1532-6 [PMID: 11859197]
  11. Neuroimage. 2002 Jun;16(2):283-94 [PMID: 12030817]
  12. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  13. Neuroimage. 2003 Mar;18(3):633-41 [PMID: 12667840]
  14. J Clin Exp Neuropsychol. 2003 Jun;25(4):502-11 [PMID: 12911104]
  15. J Neurophysiol. 2003 Nov;90(5):3384-97 [PMID: 12917383]
  16. Neuroimage. 2004 Jul;22(3):1214-22 [PMID: 15219593]
  17. Neuroimage. 2004;23 Suppl 1:S97-107 [PMID: 15501104]
  18. Brain Cogn. 2004 Nov;56(2):129-40 [PMID: 15518930]
  19. Neuroimage. 2004 Nov;23(3):921-7 [PMID: 15528092]
  20. Neuroimage. 2005 Jan 1;24(1):244-52 [PMID: 15588616]
  21. Cereb Cortex. 2005 Sep;15(9):1332-42 [PMID: 15635061]
  22. Science. 2005 Feb 18;307(5712):1118-21 [PMID: 15718473]
  23. Neuroimage. 2005 Mar;25(1):193-205 [PMID: 15734355]
  24. Neuroimage. 2005 Apr 1;25(2):616-24 [PMID: 15784441]
  25. Neuroimage. 2005 Oct 1;27(4):824-34 [PMID: 15982902]
  26. Science. 2005 Oct 14;310(5746):332-6 [PMID: 16224029]
  27. Eur J Neurosci. 2005 Dec;22(11):2917-26 [PMID: 16324126]
  28. Brain. 2006 Mar;129(Pt 3):564-83 [PMID: 16399806]
  29. J Exp Psychol Hum Percept Perform. 2006 Feb;32(1):45-58 [PMID: 16478325]
  30. Neuron. 2006 May 18;50(4):655-63 [PMID: 16701214]
  31. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 [PMID: 16945915]
  32. Cereb Cortex. 2007 Jul;17(7):1664-71 [PMID: 16963517]
  33. J Neurosci. 2006 Dec 20;26(51):13338-43 [PMID: 17182784]
  34. Trends Cogn Sci. 2007 Feb;11(2):49-57 [PMID: 17188554]
  35. Science. 2007 Jan 19;315(5810):393-5 [PMID: 17234951]
  36. Nat Neurosci. 2007 Feb;10(2):240-8 [PMID: 17237780]
  37. Cereb Cortex. 2007 Nov;17(11):2703-12 [PMID: 17264251]
  38. Cereb Cortex. 2007 Nov;17(11):2625-33 [PMID: 17264254]
  39. Nature. 2007 May 3;447(7140):83-6 [PMID: 17476267]
  40. Magn Reson Imaging. 2007 Jun;25(5):684-94 [PMID: 17540281]
  41. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  42. Psychol Bull. 2007 Sep;133(5):833-58 [PMID: 17723032]
  43. Neuroimage. 2007 Nov 15;38(3):640-8 [PMID: 17884586]
  44. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17146-51 [PMID: 17940032]
  45. J Neurosci. 2007 Oct 17;27(42):11306-14 [PMID: 17942725]
  46. Neuron. 2008 Jan 24;57(2):314-25 [PMID: 18215627]
  47. Hum Brain Mapp. 2009 Feb;30(2):625-37 [PMID: 18219617]
  48. Nat Neurosci. 2008 Apr;11(4):389-97 [PMID: 18368045]
  49. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  50. J Cogn Neurosci. 2009 Mar;21(3):489-510 [PMID: 18510452]
  51. Nat Rev Neurosci. 2008 Nov;9(11):856-69 [PMID: 18843271]
  52. Neuroimage. 2009 Mar 1;45(1):52-9 [PMID: 19059346]
  53. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 [PMID: 19188601]
  54. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5948-53 [PMID: 19293382]
  55. J Neurosci. 2009 May 6;29(18):5897-909 [PMID: 19420256]
  56. J Neurosci. 2009 May 27;29(21):7031-9 [PMID: 19474330]
  57. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 [PMID: 19620724]
  58. PLoS Biol. 2009 Aug;7(8):e1000167 [PMID: 19652698]
  59. J Neurosci. 2009 Aug 26;29(34):10683-94 [PMID: 19710320]
  60. J Neurosci. 2009 Oct 21;29(42):13410-7 [PMID: 19846728]
  61. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20069-74 [PMID: 19903877]
  62. Neuroimage. 2010 Feb 1;49(3):2638-48 [PMID: 19913622]
  63. Neuropsychologia. 2010 Jun;48(7):1886-94 [PMID: 19969009]
  64. Hum Brain Mapp. 2010 Aug;31(8):1207-16 [PMID: 20063361]
  65. J Vis. 2010 Jan 27;10(1):12.1-16 [PMID: 20143905]
  66. Neuron. 2010 Feb 25;65(4):550-62 [PMID: 20188659]
  67. Neuroimage. 2010 Oct 15;53(1):303-17 [PMID: 20600998]
  68. Neuroimage. 2011 Mar 1;55(1):225-32 [PMID: 21111832]
  69. Neuroimage. 2011 Jun 1;56(3):1546-55 [PMID: 21356313]
  70. J Neurosci. 2011 Mar 9;31(10):3743-56 [PMID: 21389229]
  71. J Neurosci. 2011 Aug 24;31(34):12351-63 [PMID: 21865477]
  72. J Neurosci. 2011 Sep 7;31(36):12954-62 [PMID: 21900574]
  73. Cereb Cortex. 2012 Aug;22(8):1894-903 [PMID: 21955921]
  74. J Neurosci. 2011 Oct 12;31(41):14521-30 [PMID: 21994368]
  75. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3979-84 [PMID: 22355129]
  76. Neuroimage. 2012 Sep;62(3):1529-36 [PMID: 22609793]
  77. Neuroimage. 2012 Sep;62(3):1551-62 [PMID: 22634216]
  78. Front Hum Neurosci. 2012 Jun 21;6:189 [PMID: 22737119]
  79. Neuroscientist. 2013 Feb;19(1):76-87 [PMID: 22785104]
  80. Front Neuroanat. 2012 Jul 26;6:29 [PMID: 22855672]
  81. J Neurosci. 2013 Feb 20;33(8):3259-75 [PMID: 23426655]
  82. PLoS One. 2013;8(2):e57257 [PMID: 23468948]
  83. Neuron. 2013 Mar 20;77(6):1174-86 [PMID: 23522051]
  84. Brain. 2014 Jan;137(Pt 1):12-32 [PMID: 23869106]
  85. J Cogn Neurosci. 1997 Fall;9(5):648-63 [PMID: 23965122]
  86. J Neurosci. 2014 Jan 15;34(3):932-40 [PMID: 24431451]
  87. J Neurosci. 2014 Jul 30;34(31):10156-67 [PMID: 25080579]
  88. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18745-50 [PMID: 25512496]
  89. Elife. 2015 Apr 13;4:e06481 [PMID: 25866927]
  90. J Neurosci. 2015 May 20;35(20):7695-714 [PMID: 25995460]
  91. J Neurosci. 2015 Jun 24;35(25):9432-45 [PMID: 26109666]
  92. Nat Commun. 2015 Jul 16;6:7751 [PMID: 26178017]
  93. J Neurosci. 2016 Apr 13;36(15):4377-88 [PMID: 27076432]
  94. Cereb Cortex. 2018 Jun 1;28(6):2085-2099 [PMID: 28472289]
  95. J Neurophysiol. 1994 Aug;72(2):1020-3 [PMID: 7983507]
  96. Cereb Cortex. 1995 Sep-Oct;5(5):448-56 [PMID: 8547791]
  97. Neuroimage. 1995 Mar;2(1):45-53 [PMID: 9343589]

MeSH Term

Animals
Attention
Brain Mapping
Cognition
Female
Functional Laterality
Macaca mulatta
Magnetic Resonance Imaging
Male
Nerve Net
Photic Stimulation
Principal Component Analysis
Recruitment, Neurophysiological
Space Perception

Word Cloud

Created with Highcharts 10.0.0DMNcognitiveactivatedeventsregionsshiftsfMRInetworkhigh-levelinternallyspecieswhethernonhumanchangesspatialshiftattentionmonkeydefaultmodeactivetaskmonitoringunexpectedsentinelfocusedfuturethoughtsevolutionarilypreservedpropertieshumandemandingrecruittestedcontextprimatesmeasuredattentionalweightsbasedstayfunctionalclusteredshiftingmightunifyingfunctionassociatedrestconditionsdifficultdefineexternalworldhumansengagedtasksexistencecorrelatesmicechallengeideaoperationsintrospectionautobiographicalmemoryretrievalplanningpredictingsomeoneelse'sdefiningrecentstudydemonstratedyetunknownholdsThereforelargefemalemaledisplacementsinternalrulesrelevancecomparedmaintaininglocationUsingmacaquesdetectedcorticallargelyoverlappedMoreovertimecoursessampledindependentlydefinedfocishowedsignificantselectivityFinallyclusteringindependentrestingstatedatarevealedconjointlywhereasapartthereforeproposegenerallyrecruitsexplainbreakdownmanyneurologicaldiseasescharacterizeddeclinedflexibilityActivationcansubjectsdirectedstatesthinkingselfperspectiveothersimaginingpastmindwanderingFurthermoreenvironmentArguablyprocessescommonfastsubstantialactivityalsoreportedCoreshift-selectivesharedseveralindicatinggeneralconstituteonefunctionsAttentionShiftsRecruitMonkeyDefaultModeNetworkcognition

Similar Articles

Cited By