Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility?

Letícia Menezes, Thabata Maria Alvarez, Gabriela Félix Persinoti, João Paulo Franco, Fábio Squina, Edimar Agnaldo Moreira, Douglas Antonio Alvaredo Paixão, Ana Maria Costa-Leonardo, Vinícius Xavier da Silva, Maria Teresa Pedrosa Silva Clerici, Alberto Arab
Author Information
  1. Letícia Menezes: Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil.
  2. Thabata Maria Alvarez: Universidade Positivo, Curitiba, PR, Brazil.
  3. Gabriela Félix Persinoti: Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil.
  4. João Paulo Franco: Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil.
  5. Fábio Squina: Programa em Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil.
  6. Edimar Agnaldo Moreira: CCNH-Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, SP, Brazil.
  7. Douglas Antonio Alvaredo Paixão: Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil.
  8. Ana Maria Costa-Leonardo: Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil.
  9. Vinícius Xavier da Silva: Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, Brazil.
  10. Maria Teresa Pedrosa Silva Clerici: Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
  11. Alberto Arab: CCNH-Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, SP, Brazil. albertoarab@gmail.com. ORCID

Abstract

It has been suggested that food storage inside the nest may offer termites with a nutritional provision during low resource availability. Additionally, feces employed as construction material provide an excellent environment for colonization by microorganisms and, together with the storage of plant material inside the nest, could thus provide some advantage to the termites in terms of lignocellulose decomposition. Here, we conducted for the first time a comprehensive study of the microbial communities associated to a termite exhibiting food storage behavior using Illumina sequencing of the 16S and (ITS2) regions of rRNA genes, together with enzymatic assays and data collected in the field. Cornitermes cumulans (Syntermitinae) stored grass litter in nodules made from feces and saliva located in the nest core. The amount of nodules increased with nest size and isolation, and interestingly, the soluble fraction of extracts from nodules showed a higher activity against hemicellulosic substrates compared to termite guts. Actinobacteria and Sordariales dominated microbial communities of food nodules and nest walls, whereas Spirochetes and Pleosporales dominated gut samples of C. cumulans. Within Syntermitinae, however, gut bacterial assemblages were dissimilar. On the other hand, there is a remarkable convergence of the bacterial community structure of Termitidae nests. Our results suggest that the role of nodules could be related to food storage; however, the higher xylanolytic activity in the nodules and their associated microbiota could also provide C. cumulans with an external source of predigested polysaccharides, which might be advantageous in comparison with litter-feeding termites that do not display food storage behavior.

Keywords

References

  1. Microb Ecol. 2016 Jan;71(1):207-20 [PMID: 26518432]
  2. Mol Ecol. 2015 Oct;24(20):5284-95 [PMID: 26348261]
  3. J Insect Sci. 2011;11:122 [PMID: 22224433]
  4. Syst Appl Microbiol. 2015 Oct;38(7):472-82 [PMID: 26283320]
  5. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  6. Biotechniques. 2004 May;36(5):808-12 [PMID: 15152600]
  7. Bioresour Technol. 2008 Nov;99(16):7553-64 [PMID: 18374565]
  8. PLoS One. 2015 Apr 24;10(4):e0123790 [PMID: 25909987]
  9. FEMS Microbiol Ecol. 2017 Jan;93(1): [PMID: 27798065]
  10. Biotechnol Biofuels. 2011 Nov 14;4:50 [PMID: 22081966]
  11. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  12. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  13. Mycologia. 2016 Jan-Feb;108(1):1-5 [PMID: 26553774]
  14. Appl Environ Microbiol. 2007 Aug;73(16):5199-208 [PMID: 17574999]
  15. Ecol Lett. 2006 Jun;9(6):683-93 [PMID: 16706913]
  16. Microb Ecol. 2012 May;63(4):975-85 [PMID: 22173371]
  17. PLoS One. 2013 Sep 04;8(9):e73827 [PMID: 24023907]
  18. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  19. Biol Lett. 2007 Jun 22;3(3):336-9 [PMID: 17374589]
  20. Biotechnol Adv. 2013 Nov;31(6):838-50 [PMID: 23623853]
  21. Zootaxa. 2015 Oct 20;4032(5):451-92 [PMID: 26624381]
  22. Biotechnol Biofuels. 2011 Oct 05;4:36 [PMID: 21974832]
  23. Mol Ecol. 2006 Feb;15(2):505-16 [PMID: 16448416]
  24. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  25. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  26. PLoS One. 2017 Mar 22;12(3):e0174366 [PMID: 28329010]
  27. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  28. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  29. PLoS One. 2013 Apr 12;8(4):e61126 [PMID: 23593407]
  30. Microbiome. 2015 Feb 25;3:5 [PMID: 25830022]
  31. Nature. 2007 Nov 22;450(7169):560-5 [PMID: 18033299]
  32. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]

Grants

  1. 2015/21497-6/Fundação de Amparo à Pesquisa do Estado de São Paulo
  2. 00878-12/Fundação de Amparo à Pesquisa do Estado de Minas Gerais
  3. 00878-12/Fundação de Amparo à Pesquisa do Estado de Minas Gerais

MeSH Term

Animals
Bacteria
Behavior, Animal
DNA, Bacterial
Enzyme Assays
Feces
Food Storage
Fungi
Gastrointestinal Microbiome
Gastrointestinal Tract
Genes, rRNA
Isoptera
Lignin
Microbiota
Nesting Behavior
Phylogeny
Polysaccharides
RNA, Ribosomal, 16S
Saliva
Sequence Analysis, DNA

Chemicals

DNA, Bacterial
Polysaccharides
RNA, Ribosomal, 16S
lignocellulose
hemicellulose
Lignin

Word Cloud

Created with Highcharts 10.0.0foodnodulesstoragenestcumulanstermitesprovideSyntermitinaeinsidefecesmaterialtogethermicrobialcommunitiesassociatedtermitebehaviorCornitermeshigheractivitydominatedgutChoweverbacterialmicrobiotasuggestedmayoffernutritionalprovisionlowresourceavailabilityAdditionallyemployedconstructionexcellentenvironmentcolonizationmicroorganismsplantthusadvantagetermslignocellulosedecompositionconductedfirsttimecomprehensivestudyexhibitingusingIlluminasequencing16SITS2regionsrRNAgenesenzymaticassaysdatacollectedfieldstoredgrasslittermadesalivalocatedcoreamountincreasedsizeisolationinterestinglysolublefractionextractsshowedhemicellulosicsubstratescomparedgutsActinobacteriaSordarialeswallswhereasSpirochetesPleosporalessamplesWithinassemblagesdissimilarhandremarkableconvergencecommunitystructureTermitidaenestsresultssuggestrolerelatedxylanolyticalsoexternalsourcepredigestedpolysaccharidesmightadvantageouscomparisonlitter-feedingdisplayFoodStorageSavannaTermite:StrategyImproveHemicelluloseDigestibility?16SGutITSLignocelluloseStoredTermites

Similar Articles

Cited By (4)