Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.

David A Korasick, Travis A Pemberton, Benjamin W Arentson, Donald F Becker, John J Tanner
Author Information
  1. David A Korasick: Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA. korasickd@missouri.edu.
  2. Travis A Pemberton: Department of Chemistry, University of Missouri, Columbia, MO 65211, USA. tpemb@sas.upenn.edu.
  3. Benjamin W Arentson: Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA. ben.arentson@gmail.com.
  4. Donald F Becker: Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA. dbecker3@unl.edu.
  5. John J Tanner: Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA. tannerjj@missouri.edu.

Abstract

Proline utilization A (PutA) is a bifunctional flavoenzyme that catalyzes the two-step oxidation of l-proline to l-glutamate using spatially separated proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites. Substrate inhibition of the coupled PRODH-GSALDH reaction by proline is a common kinetic feature of PutAs, yet the structural basis for this phenomenon remains unknown. To understand the mechanism of substrate inhibition, we determined the 2.15 Å resolution crystal structure of PutA complexed with proline. Proline was discovered in five locations remote from the PRODH active site. Most notably, strong electron density indicated that proline bound tightly to the GSAL binding site of the GSALDH active site. The pose and interactions of proline bound in this site are remarkably similar to those of the natural aldehyde substrate, GSAL, implying that proline inhibits the GSALDH reaction of PutA. Kinetic measurements show that proline is a competitive inhibitor of the PutA GSALDH reaction. Together, the structural and kinetic data show that substrate inhibition of the PutA coupled reaction is due to proline binding in the GSAL site.

Keywords

References

J Biol Chem. 2014 Feb 7;289(6):3639-51 [PMID: 24352662]
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
J Mol Biol. 2012 Jul 13;420(3):176-89 [PMID: 22516612]
Arch Biochem Biophys. 2013 Oct 1;538(1):34-40 [PMID: 23928095]
Biochemistry. 2004 Oct 5;43(39):12539-48 [PMID: 15449943]
Arch Biochem Biophys. 2011 Dec 15;516(2):113-20 [PMID: 22040654]
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67 [PMID: 22505256]
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2878-83 [PMID: 20133651]
Biochemistry. 2012 Dec 18;51(50):10099-108 [PMID: 23151026]
Biochem J. 1989 Aug 1;261(3):935-43 [PMID: 2803253]
J Mol Biol. 1968 Apr 28;33(2):491-7 [PMID: 5700707]
Chem Biol Interact. 2013 Feb 25;202(1-3):51-61 [PMID: 23219887]
Biochemistry. 2008 May 20;47(20):5573-80 [PMID: 18426222]
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Oct 1;64(Pt 10):949-53 [PMID: 18931443]
FEBS J. 2017 Sep;284(18):3029-3049 [PMID: 28710792]
Biochemistry. 2009 Feb 10;48(5):951-9 [PMID: 19140736]
Antioxid Redox Signal. 2017 Nov 13;:null [PMID: 28990412]
J Mol Biol. 2006 Sep 22;362(3):490-501 [PMID: 16934832]
J Biol Chem. 2007 May 11;282(19):14316-27 [PMID: 17344208]
Biochemistry. 2015 Sep 8;54(35):5513-22 [PMID: 26260980]
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
Acta Crystallogr D Biol Crystallogr. 2012 Aug;68(Pt 8):1010-8 [PMID: 22868767]
Arch Biochem Biophys. 2017 Oct 15;632:142-157 [PMID: 28712849]
Anal Biochem. 1975 Mar;64(1):85-97 [PMID: 166569]
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3389-94 [PMID: 24550478]
J Biol Chem. 2016 Nov 11;291(46):24065-24075 [PMID: 27679491]
Biochemistry. 2010 Jan 26;49(3):560-9 [PMID: 19994913]
Biochemistry. 2014 Aug 12;53(31):5150-61 [PMID: 25046425]
Nat Struct Biol. 2003 Feb;10(2):109-14 [PMID: 12514740]
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]

Grants

  1. R01 GM061068/NIGMS NIH HHS
  2. R01 GM065546/NIGMS NIH HHS

MeSH Term

Aldehyde Oxidoreductases
Aldehydes
Bacterial Proteins
Biocatalysis
Bradyrhizobium
Catalytic Domain
Crystallography, X-Ray
Kinetics
Membrane Proteins
Models, Molecular
Oxidation-Reduction
Proline
Proline Oxidase
Protein Binding
Protein Conformation
Substrate Specificity

Chemicals

Aldehydes
Bacterial Proteins
Membrane Proteins
PutA protein, Bacteria
Proline
Aldehyde Oxidoreductases
N-acetyl-gamma-glutamyl-phosphate reductase
Proline Oxidase

Word Cloud

Similar Articles

Cited By