Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root.

Solmaz Irani, Brett Trost, Matthew Waldner, Naghabushana Nayidu, Jiangying Tu, Anthony J Kusalik, Christopher D Todd, Yangdou Wei, Peta C Bonham-Smith
Author Information
  1. Solmaz Irani: Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
  2. Brett Trost: Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9, Canada.
  3. Matthew Waldner: Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9, Canada.
  4. Naghabushana Nayidu: Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
  5. Jiangying Tu: Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
  6. Anthony J Kusalik: Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9, Canada.
  7. Christopher D Todd: Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
  8. Yangdou Wei: Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
  9. Peta C Bonham-Smith: Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada. peta.bonhams@usask.ca.

Abstract

BACKGROUND: Clubroot is an important disease caused by the obligate parasite Plasmodiophora brassicae that infects the Brassicaceae. As a soil-borne pathogen, P. brassicae induces the generation of abnormal tissue in the root, resulting in the formation of galls. Root infection negatively affects the uptake of water and nutrients in host plants, severely reducing their growth and productivity. Many studies have emphasized the molecular and physiological effects of the clubroot disease on root tissues. The aim of the present study is to better understand the effect of P. brassicae on the transcriptome of both shoot and root tissues of Arabidopsis thaliana.
RESULTS: Transcriptome profiling using RNA-seq was performed on both shoot and root tissues at 17, 20 and 24 days post inoculation (dpi) of A. thaliana, a model plant host for P. brassicae. The number of differentially expressed genes (DEGs) between infected and uninfected samples was larger in shoot than in root. In both shoot and root, more genes were differentially regulated at 24 dpi than the two earlier time points. Genes that were highly regulated in response to infection in both shoot and root primarily were involved in the metabolism of cell wall compounds, lipids, and shikimate pathway metabolites. Among hormone-related pathways, several jasmonic acid biosynthesis genes were upregulated in both shoot and root tissue. Genes encoding enzymes involved in cell wall modification, biosynthesis of sucrose and starch, and several classes of transcription factors were generally differently regulated in shoot and root.
CONCLUSIONS: These results highlight the similarities and differences in the transcriptomic response of above- and below-ground tissues of the model host Arabidopsis following P. brassicae infection. The main transcriptomic changes in root metabolism during clubroot disease progression were identified. An overview of DEGs in the shoot underlined the physiological changes in above-ground tissues following pathogen establishment and disease progression. This study provides insights into host tissue-specific molecular responses to clubroot development and may have applications in the development of clubroot markers for more effective breeding strategies.

Keywords

References

  1. F1000Res. 2015 Oct 14;4:1070 [PMID: 26674615]
  2. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  3. Plant Cell. 2002;14 Suppl:S131-51 [PMID: 12045274]
  4. Plant Cell Environ. 2009 Sep;32(9):1211-29 [PMID: 19389052]
  5. Plant J. 2004 Mar;37(6):914-39 [PMID: 14996223]
  6. Plant Cell Physiol. 2012 May;53(5):901-11 [PMID: 22433460]
  7. Gene Regul Syst Bio. 2007 Sep 26;1:167-75 [PMID: 19936086]
  8. Plant J. 2010 Jul 1;63(1):115-27 [PMID: 20408997]
  9. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  10. Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338 [PMID: 27899567]
  11. BMC Genomics. 2014 Dec 23;15:1166 [PMID: 25532522]
  12. Funct Integr Genomics. 2013 Jun;13(2):191-205 [PMID: 23420032]
  13. Plant Physiol. 2008 Jun;147(2):503-17 [PMID: 18434605]
  14. Funct Plant Biol. 2011 Jun;38(6):462-478 [PMID: 32480901]
  15. Plant Signal Behav. 2009 Nov;4(11):1010-2 [PMID: 20009545]
  16. Phytochem Rev. 2011 Sep;10(3):397-412 [PMID: 21909286]
  17. Curr Opin Plant Biol. 2005 Jun;8(3):308-16 [PMID: 15860428]
  18. Plant Physiol. 2010 Mar;152(3):1544-61 [PMID: 20023151]
  19. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  20. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  21. J Exp Bot. 2007;58(15-16):4019-26 [PMID: 18182420]
  22. Plant Cell. 2003 Apr;15(4):809-34 [PMID: 12671079]
  23. Sci Rep. 2015 Jun 18;5:11153 [PMID: 26084520]
  24. Plant J. 2011 Apr;66(1):94-116 [PMID: 21443626]
  25. Mol Plant Pathol. 2011 Apr;12(3):247-62 [PMID: 21355997]
  26. Curr Opin Plant Biol. 2007 Aug;10(4):366-71 [PMID: 17644023]
  27. Mol Plant Microbe Interact. 2006 May;19(5):480-94 [PMID: 16673935]
  28. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  29. Front Microbiol. 2017 Apr 24;8:673 [PMID: 28484434]
  30. Plant Cell Physiol. 2014 Feb;55(2):392-411 [PMID: 24285749]
  31. New Phytol. 2005 Apr;166(1):241-50 [PMID: 15760367]
  32. BMC Evol Biol. 2010 Dec 02;10:377 [PMID: 21126361]
  33. Mol Plant Microbe Interact. 2012 Nov;25(11):1478-91 [PMID: 22809276]
  34. Front Plant Sci. 2016 Dec 23;7:1929 [PMID: 28066482]
  35. BMC Genomics. 2016 Mar 31;17:272 [PMID: 27036196]
  36. Genesis. 2015 Aug;53(8):474-85 [PMID: 26201819]
  37. Mol Plant Pathol. 2010 Jul;11(4):545-62 [PMID: 20618711]
  38. Planta. 2015 Dec;242(6):1263-76 [PMID: 26297452]
  39. Plant Signal Behav. 2011 Jan;6(1):13-8 [PMID: 21248491]
  40. Plant Physiol. 2000 Jan;122(1):3-10 [PMID: 10631243]
  41. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  42. Mol Plant Pathol. 2012 Feb;13(2):105-13 [PMID: 21726396]
  43. Front Plant Sci. 2016 Jan 05;6:1183 [PMID: 26779217]
  44. Mol Plant Microbe Interact. 2006 Dec;19(12):1431-43 [PMID: 17153927]
  45. Plant Cell. 2007 May;19(5):1665-81 [PMID: 17513501]
  46. Plant Signal Behav. 2014;9(4):e28593 [PMID: 24699875]
  47. Front Plant Sci. 2016 Jul 11;7:1013 [PMID: 27462338]
  48. Mol Plant Microbe Interact. 2002 Jul;15(7):693-700 [PMID: 12118885]
  49. J Cell Biol. 1963 Apr;17:208-12 [PMID: 13986422]
  50. Plant Physiol. 2005 Sep;139(1):5-17 [PMID: 16166256]
  51. Plant J. 2003 Oct;36(2):177-88 [PMID: 14535883]
  52. Plant Cell Physiol. 2015 Nov;56(11):2158-68 [PMID: 26363358]
  53. Front Plant Sci. 2014 Feb 10;5:17 [PMID: 24575102]

Grants

  1. 20100098/Ministry of Agriculture - Saskatchewan
  2. 20100098/Saskatchewan Canola Commission

MeSH Term

Arabidopsis
Gene Expression Profiling
Gene Expression Regulation, Plant
Plant Diseases
Plant Growth Regulators
Plant Roots
Plant Shoots
Plasmodiophorida
Transcription Factors
Transcriptome

Chemicals

Plant Growth Regulators
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0rootshootbrassicaetissuesdiseasePinfectionhostclubrootArabidopsisPlasmodiophorathalianagenesregulatedresponseClubrootpathogentissueRootmolecularphysiologicalstudyTranscriptomeRNA-seqdpimodeldifferentiallyDEGsGenesinvolvedmetabolismcellwallseveralbiosynthesistranscriptomicfollowingchangesprogressiondevelopmentBACKGROUND:importantcausedobligateparasiteinfectsBrassicaceaesoil-borneinducesgenerationabnormalresultingformationgallsnegativelyaffectsuptakewaternutrientsplantsseverelyreducinggrowthproductivityManystudiesemphasizedeffectsaimpresentbetterunderstandeffecttranscriptomeRESULTS:profilingusingperformed172024 dayspostinoculationplantnumberexpressedinfecteduninfectedsampleslarger24twoearliertimepointshighlyprimarilycompoundslipidsshikimatepathwaymetabolitesAmonghormone-relatedpathwaysjasmonicacidupregulatedencodingenzymesmodificationsucrosestarchclassestranscriptionfactorsgenerallydifferentlyCONCLUSIONS:resultshighlightsimilaritiesdifferencesabove-below-groundmainidentifiedoverviewunderlinedabove-groundestablishmentprovidesinsightstissue-specificresponsesmayapplicationsmarkerseffectivebreedingstrategiesanalysisHost-pathogeninteractionShootTranscriptomicprofile

Similar Articles

Cited By