Preventing Neurodegenerative Memory Loss in Hopfield Neuronal Networks Using Cerebral Organoids or External Microelectronics.

M Morrison, P D Maia, J N Kutz
Author Information
  1. M Morrison: Department of Applied Mathematics, University of Washington, Seattle, WA, USA. ORCID
  2. P D Maia: Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
  3. J N Kutz: Department of Applied Mathematics, University of Washington, Seattle, WA, USA.

Abstract

Developing technologies have made significant progress towards linking the brain with brain-machine interfaces (BMIs) which have the potential to aid damaged brains to perform their original motor and cognitive functions. We consider the viability of such devices for mitigating the deleterious effects of memory loss that is induced by neurodegenerative diseases and/or traumatic brain injury (TBI). Our computational study considers the widely used Hopfield network, an autoassociative memory model in which neurons converge to a stable state pattern after receiving an input resembling the given memory. In this study, we connect an auxiliary network of neurons, which models the BMI device, to the original Hopfield network and train it to converge to its own auxiliary memory patterns. Injuries to the original Hopfield memory network, induced through neurodegeneration, for instance, can then be analyzed with the goal of evaluating the ability of the BMI to aid in memory retrieval tasks. Dense connectivity between the auxiliary and Hopfield networks is shown to promote robustness of memory retrieval tasks for both optimal and nonoptimal memory sets. Our computations estimate damage levels and parameter ranges for which full or partial memory recovery is achievable, providing a starting point for novel therapeutic strategies.

References

  1. J Neurosci Methods. 2015 Sep 30;253:233-43 [PMID: 26188255]
  2. J Alzheimers Dis. 2016;51(3):727-36 [PMID: 26890760]
  3. Small. 2015 Apr 8;11(14):1703-10 [PMID: 25408432]
  4. Sci Rep. 2013 Nov 20;3:3270 [PMID: 24253492]
  5. Neural Comput. 1995 Sep;7(5):1105-27 [PMID: 7584889]
  6. Sci Rep. 2016 Mar 03;6:22170 [PMID: 26938468]
  7. Nat Rev Neurol. 2014 Mar;10(3):156-66 [PMID: 24514870]
  8. Brain Res. 2016 Sep 1;1646:25-33 [PMID: 27216571]
  9. Brain. 2009 Feb;132(Pt 2):402-16 [PMID: 19059977]
  10. J Neurotrauma. 2013 Nov 15;30(22):1831-44 [PMID: 23815563]
  11. J Neurosci. 2016 Jan 20;36(3):979-87 [PMID: 26791225]
  12. Nature. 2013 Sep 19;501(7467):319-20 [PMID: 23995687]
  13. Acta Neuropathol. 2015 Feb;129(2):317-32 [PMID: 25528329]
  14. Proc Natl Acad Sci U S A. 1984 May;81(10):3088-92 [PMID: 6587342]
  15. Alzheimers Dement. 2013 Mar;9(2):208-45 [PMID: 23507120]
  16. Neurocrit Care. 2016 Jun;24(3):342-52 [PMID: 26690938]
  17. Trends Neurosci. 2016 May;39(5):311-324 [PMID: 27040729]
  18. Nat Nanotechnol. 2016 Aug;11(8):693-9 [PMID: 27183057]
  19. Nanoscale Res Lett. 2014 Feb 03;9(1):56 [PMID: 24484729]
  20. Brain. 2016 Apr;139(Pt 4):1094-105 [PMID: 26912636]
  21. Eur J Neurosci. 2008 Jan;27(2):492-513 [PMID: 18215243]
  22. PLoS Comput Biol. 2017 Jan 5;13(1):e1005261 [PMID: 28056097]
  23. Biosystems. 2009 Feb;95(2):137-44 [PMID: 18983888]
  24. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  25. Biophys J. 2012 Aug 8;103(3):405-414 [PMID: 22947856]
  26. Nat Rev Neurosci. 2013 Mar;14(3):161-76 [PMID: 23361386]
  27. J Comput Neurosci. 2014 Oct;37(2):317-32 [PMID: 24916135]
  28. Ann Neurol. 2015 Sep;78(3):439-53 [PMID: 26040676]
  29. J Physiol Paris. 2006 Jul-Sep;100(1-3):16-30 [PMID: 17081735]
  30. Nat Commun. 2015 Jun 25;6:7522 [PMID: 26108993]
  31. PLoS One. 2010 Dec 22;5(12):e14413 [PMID: 21203505]
  32. Science. 2014 Jul 18;345(6194):1247125 [PMID: 25035496]
  33. Nat Rev Neurol. 2013 Jan;9(1):25-34 [PMID: 23183882]
  34. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 [PMID: 6953413]
  35. J Comput Neurosci. 2017 Jun;42(3):323-347 [PMID: 28393281]
  36. J Comput Neurosci. 2014 Apr;36(2):141-55 [PMID: 23818067]
  37. Nat Rev Neurol. 2013 Apr;9(4):231-6 [PMID: 23443846]
  38. Biosystems. 2007 Mar;88(1-2):1-15 [PMID: 16843590]
  39. Neuron. 2015 Mar 18;85(6):1177-92 [PMID: 25789754]
  40. Nanoscale Res Lett. 2009 Dec 04;5(2):410-5 [PMID: 20672083]
  41. Cognit Comput. 2009 Jun;1(2):160-176 [PMID: 20396612]
  42. Science. 2013 Oct 11;342(6155):200-1 [PMID: 24115427]
  43. Chemphyschem. 2002 Mar 12;3(3):276-84 [PMID: 12503174]
  44. Nat Rev Neurol. 2015 Feb;11(2):71-2 [PMID: 25582447]
  45. Cell. 2013 Sep 26;155(1):19-20 [PMID: 24074857]

Grants

  1. T32 LM012419/NLM NIH HHS

MeSH Term

Algorithms
Brain
Computer Simulation
Electronics
Humans
Memory Disorders
Models, Biological
Neural Networks, Computer
Neurodegenerative Diseases
Organoids

Word Cloud

Created with Highcharts 10.0.0memoryHopfieldnetworkoriginalauxiliarybrainaidinducedstudyneuronsconvergeBMIretrievaltasksDevelopingtechnologiesmadesignificantprogresstowardslinkingbrain-machineinterfacesBMIspotentialdamagedbrainsperformmotorcognitivefunctionsconsiderviabilitydevicesmitigatingdeleteriouseffectslossneurodegenerativediseasesand/ortraumaticinjuryTBIcomputationalconsiderswidelyusedautoassociativemodelstablestatepatternreceivinginputresemblinggivenconnectmodelsdevicetrainpatternsInjuriesneurodegenerationinstancecananalyzedgoalevaluatingabilityDenseconnectivitynetworksshownpromoterobustnessoptimalnonoptimalsetscomputationsestimatedamagelevelsparameterrangesfullpartialrecoveryachievableprovidingstartingpointnoveltherapeuticstrategiesPreventingNeurodegenerativeMemoryLossNeuronalNetworksUsingCerebralOrganoidsExternalMicroelectronics

Similar Articles

Cited By