Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential.

Lorena Carro, Imen Nouioui, Vartul Sangal, Jan P Meier-Kolthoff, Martha E Trujillo, Maria Del Carmen Montero-Calasanz, Nevzat Sahin, Darren Lee Smith, Kristi E Kim, Paul Peluso, Shweta Deshpande, Tanja Woyke, Nicole Shapiro, Nikos C Kyrpides, Hans-Peter Klenk, Markus Göker, Michael Goodfellow
Author Information
  1. Lorena Carro: School of Biology, Newcastle University, Newcastle upon Tyne, UK. lcg@usal.es. ORCID
  2. Imen Nouioui: School of Biology, Newcastle University, Newcastle upon Tyne, UK.
  3. Vartul Sangal: Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK.
  4. Jan P Meier-Kolthoff: Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany. ORCID
  5. Martha E Trujillo: Departamento de Microbiologia y Genetica, Lab 214, Universidad de Salamanca, Salamanca, Spain.
  6. Maria Del Carmen Montero-Calasanz: School of Biology, Newcastle University, Newcastle upon Tyne, UK. ORCID
  7. Nevzat Sahin: Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Kurupelit-Samsun, Turkey. ORCID
  8. Darren Lee Smith: Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK.
  9. Kristi E Kim: Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA.
  10. Paul Peluso: Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA.
  11. Shweta Deshpande: DOE Joint Genome Institute, Walnut Creek, California, USA.
  12. Tanja Woyke: DOE Joint Genome Institute, Walnut Creek, California, USA. ORCID
  13. Nicole Shapiro: DOE Joint Genome Institute, Walnut Creek, California, USA.
  14. Nikos C Kyrpides: DOE Joint Genome Institute, Walnut Creek, California, USA.
  15. Hans-Peter Klenk: School of Biology, Newcastle University, Newcastle upon Tyne, UK. hans-peter.klenk@newcastle.ac.uk.
  16. Markus Göker: Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany. ORCID
  17. Michael Goodfellow: School of Biology, Newcastle University, Newcastle upon Tyne, UK.

Abstract

There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables. Genes associated with plant interactions highlight the potential use of micromonosporae in agriculture and biotechnology.

References

  1. Int J Syst Evol Microbiol. 2012 Feb;62(Pt 2):272-278 [PMID: 21398502]
  2. Nucleic Acids Res. 2014 Jan;42(Database issue):D613-6 [PMID: 24243842]
  3. Genes Cells. 1996 Feb;1(2):171-8 [PMID: 9140061]
  4. Sci Rep. 2017 Jun 15;7(1):3564 [PMID: 28620214]
  5. Mikrobiologiia. 1969 Sep-Oct;38(5):883-93 [PMID: 5396594]
  6. J Nat Prod. 2011 Apr 25;74(4):862-5 [PMID: 21226490]
  7. Mol Microbiol. 2001 Dec;42(5):1297-309 [PMID: 11886560]
  8. Stand Genomic Sci. 2015 May 17;10:26 [PMID: 26203337]
  9. Annu Rev Microbiol. 1980;34:537-57 [PMID: 6159822]
  10. Trends Microbiol. 2016 Dec;24(12):968-977 [PMID: 27491886]
  11. Gene. 2016 Dec 5;594(1):97-107 [PMID: 27609432]
  12. AIMS Microbiol. 2017 May 31;3(3):383-412 [PMID: 31294168]
  13. Appl Environ Microbiol. 2003 Sep;69(9):5603-8 [PMID: 12957950]
  14. Int J Syst Evol Microbiol. 2008 Jul;58(Pt 7):1516-21 [PMID: 18599686]
  15. J Antibiot (Tokyo). 2005 Jan;58(1):1-26 [PMID: 15813176]
  16. New Phytol. 2013 Jan;197(1):194-206 [PMID: 23121215]
  17. J Gen Appl Microbiol. 2007 Feb;53(1):29-37 [PMID: 17429159]
  18. Antonie Van Leeuwenhoek. 2013 May;103(5):1089-96 [PMID: 23381607]
  19. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  20. Antonie Van Leeuwenhoek. 2012 Mar;101(3):649-55 [PMID: 22246588]
  21. Int J Syst Evol Microbiol. 2017 Feb;67(2):225-230 [PMID: 28230521]
  22. Mol Microbiol. 2010 Aug;77(3):642-57 [PMID: 20545868]
  23. Nat Chem Biol. 2014 Nov;10(11):963-8 [PMID: 25262415]
  24. BMC Genomics. 2013 Sep 11;14:611 [PMID: 24020438]
  25. Sci Rep. 2015 Feb 10;5:8365 [PMID: 25666585]
  26. ISME J. 2017 Jun;11(6):1483-1499 [PMID: 28106881]
  27. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):495-500 [PMID: 24108323]
  28. Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):2971-2977 [PMID: 22286910]
  29. Front Microbiol. 2016 Dec 20;7:2003 [PMID: 28066339]
  30. J Med Chem. 1963 Jul;6:463-4 [PMID: 14184912]
  31. J Med Microbiol. 2017 Jul;66(7):1063-1075 [PMID: 28671535]
  32. Mar Drugs. 2012 Mar;10(3):551-558 [PMID: 22611353]
  33. PLoS One. 2014 Nov 03;9(11):e111680 [PMID: 25365321]
  34. J Antibiot (Tokyo). 1974 Oct;27(10):793-800 [PMID: 4457527]
  35. J Bacteriol. 2012 Aug;194(15):4135 [PMID: 22815450]
  36. BMC Bioinformatics. 2007 Jun 18;8:209 [PMID: 17577412]
  37. Int J Syst Evol Microbiol. 2013 Jul;63(Pt 7):2389-2395 [PMID: 23178730]
  38. CRC Crit Rev Microbiol. 1979 Nov;7(3):191-214 [PMID: 396107]
  39. Plant J. 2000 Nov;24(3):327-33 [PMID: 11069706]
  40. mBio. 2015 Oct 27;6(6):e01163-15 [PMID: 26507229]
  41. Biochim Biophys Acta. 1999 Jul 9;1439(1):57-64 [PMID: 10395965]
  42. Genetika. 2009 Sep;45(9):1194-202 [PMID: 19824539]
  43. J Gen Appl Microbiol. 2008 Apr;54(2):127-33 [PMID: 18497487]
  44. Stand Genomic Sci. 2014 Mar 20;9(3):902-13 [PMID: 25197472]
  45. PLoS One. 2012;7(3):e33587 [PMID: 22448254]
  46. Springerplus. 2014 Apr 28;3:208 [PMID: 24826375]
  47. Antonie Van Leeuwenhoek. 2013 Jun;103(6):1245-54 [PMID: 23494330]
  48. Int J Syst Evol Microbiol. 2013 Dec;63(Pt 12):4546-4551 [PMID: 23907218]
  49. J Chem Ecol. 2013 Jul;39(7):1007-18 [PMID: 23881442]
  50. Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):417-422 [PMID: 15653911]
  51. J Antibiot (Tokyo). 1989 Jul;42(7):1070-87 [PMID: 2753814]
  52. Antimicrob Agents Chemother (Bethesda). 1964;10:47-52 [PMID: 14287980]
  53. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  54. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  55. J Am Chem Soc. 2002 Sep 4;124(35):10260-1 [PMID: 12197711]
  56. J Antibiot (Tokyo). 1980 Apr;33(4):364-76 [PMID: 7410205]
  57. J Antibiot (Tokyo). 2009 Oct;62(10):565-70 [PMID: 19680283]
  58. J Bacteriol. 1998 Oct;180(19):5211-7 [PMID: 9748456]
  59. J Antibiot (Tokyo). 2005 Feb;58(2):95-102 [PMID: 15835721]
  60. Int J Syst Evol Microbiol. 2015 Dec;65(12):4615-4620 [PMID: 26395026]
  61. Syst Appl Microbiol. 2012 Mar;35(2):73-80 [PMID: 22221858]
  62. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  63. Syst Appl Microbiol. 2017 Apr;40(3):121-122 [PMID: 28249694]
  64. Genome Announc. 2013 Sep 26;1(5): [PMID: 24072863]
  65. J Antibiot (Tokyo). 2013 Jul;66(7):431-41 [PMID: 23677034]
  66. Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11448-53 [PMID: 15277670]
  67. J Antibiot (Tokyo). 1994 Aug;47(8):881-6 [PMID: 7928674]
  68. J Mol Evol. 1996 Feb;42(2):294-307 [PMID: 8919881]
  69. Int J Syst Bacteriol. 1992 Jan;42(1):166-70 [PMID: 1371061]
  70. Phytopathology. 2017 Jan;107(1):18-28 [PMID: 27552324]
  71. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):384-391 [PMID: 24505076]
  72. J Antibiot (Tokyo). 1970 Nov;23(11):551-4 [PMID: 5487129]
  73. Antimicrob Agents Chemother (Bethesda). 1968;8:260-1 [PMID: 5735370]
  74. Mar Biotechnol (NY). 2005 Sep-Oct;7(5):515-22 [PMID: 16007373]
  75. Mol Microbiol. 2007 May;64(3):602-13 [PMID: 17462011]
  76. FEMS Microbiol Rev. 2001 Jan;25(1):39-67 [PMID: 11152940]
  77. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8278-83 [PMID: 26056295]
  78. Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:127-134 [PMID: 10826795]
  79. Sci Rep. 2016 Dec 07;6:38392 [PMID: 27924912]
  80. Appl Environ Microbiol. 2007 Feb;73(4):1146-52 [PMID: 17158611]
  81. Antimicrob Agents Chemother (Bethesda). 1967;7:435-41 [PMID: 5596170]
  82. Stand Genomic Sci. 2014 Dec 08;9:10 [PMID: 25780503]
  83. Int J Syst Evol Microbiol. 2013 Mar;63(Pt 3):879-885 [PMID: 22634700]
  84. J Med Microbiol. 2013 Aug;62(Pt 8):1135-1143 [PMID: 23682166]
  85. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7 [PMID: 17537822]
  86. Annu Rev Microbiol. 2016 Sep 8;70:215-34 [PMID: 27607552]
  87. Syst Appl Microbiol. 2010 Jun;33(4):175-82 [PMID: 20409658]
  88. Syst Appl Microbiol. 2005 Jun;28(4):328-39 [PMID: 15997706]
  89. FEBS Lett. 1999 Feb 26;445(2-3):389-94 [PMID: 10094495]
  90. J Antibiot (Tokyo). 1974 Jul;27(7):492-501 [PMID: 4457530]
  91. Antonie Van Leeuwenhoek. 2015 Jul;108(1):141-50 [PMID: 25957972]
  92. Nat Rev Microbiol. 2014 Sep;12(9):635-45 [PMID: 25118885]
  93. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):316-324 [PMID: 24505069]
  94. PLoS One. 2017 Feb 22;12(2):e0170148 [PMID: 28225766]
  95. Zentralbl Bakteriol. 1997 Jan;285(2):133-56 [PMID: 9060148]
  96. Plant Physiol. 1999 Feb;119(2):489-96 [PMID: 9952444]
  97. Antonie Van Leeuwenhoek. 1993-1994;64(3-4):205-29 [PMID: 8085786]
  98. Int J Syst Evol Microbiol. 2011 May;61(Pt 5):1176-1181 [PMID: 20562246]
  99. Synth Syst Biotechnol. 2016 Sep 01;1(3):169-186 [PMID: 29062941]
  100. Curr Opin Pharmacol. 2008 Oct;8(5):557-63 [PMID: 18524678]
  101. Appl Microbiol Biotechnol. 2008 Dec;81(3):419-29 [PMID: 18841358]
  102. Appl Environ Microbiol. 2005 Jan;71(1):460-6 [PMID: 15640222]
  103. Int J Syst Evol Microbiol. 2005 Sep;55(Pt 5):1759-1766 [PMID: 16166663]
  104. Virology. 2012 Nov 25;433(2):308-19 [PMID: 22959895]
  105. Arch Microbiol. 2011 May;193(5):313-21 [PMID: 21374058]
  106. Int J Syst Evol Microbiol. 2005 Jul;55(Pt 4):1649-1656 [PMID: 16014496]
  107. Cell Rep. 2015 Aug 25;12(8):1289-99 [PMID: 26279566]
  108. Int J Syst Evol Microbiol. 2015 Nov;65(11):3818-3823 [PMID: 26238346]
  109. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  110. Nat Methods. 2010 Jun;7(6):455-7 [PMID: 20436475]
  111. Antonie Van Leeuwenhoek. 2011 Nov;100(4):579-87 [PMID: 21713368]
  112. Int J Syst Evol Microbiol. 2008 Jan;58(Pt 1):17-20 [PMID: 18175675]
  113. J Bacteriol. 1995 Jun;177(11):3027-35 [PMID: 7768798]
  114. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  115. J Ind Microbiol Biotechnol. 2014 Feb;41(2):371-86 [PMID: 23907251]
  116. Int J Syst Evol Microbiol. 2010 Feb;60(Pt 2):331-337 [PMID: 19651739]
  117. Antonie Van Leeuwenhoek. 2012 Jan;101(1):73-104 [PMID: 22045019]
  118. J Antibiot (Tokyo). 1999 Apr;52(4):374-82 [PMID: 10395273]
  119. J Ind Microbiol Biotechnol. 2010 Mar;37(3):219-24 [PMID: 20033830]
  120. PLoS One. 2011;6(10):e25777 [PMID: 22022447]
  121. FEMS Microbiol Rev. 2007 Jul;31(4):425-48 [PMID: 17509086]
  122. Environ Microbiol. 2015 Jun;17(6):2158-71 [PMID: 25329237]
  123. Microbiol Rev. 1987 Jun;51(2):221-71 [PMID: 2439888]
  124. J Bacteriol. 1970 Oct;104(1):410-33 [PMID: 5473901]
  125. Nat Chem Biol. 2015 Sep;11(9):639-48 [PMID: 26284671]
  126. J Nat Prod. 2013 Sep 27;76(9):1619-26 [PMID: 23947794]
  127. J Bacteriol. 2012 May;194(10):2703-14 [PMID: 22408163]
  128. Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1105-1111 [PMID: 12148614]
  129. Antonie Van Leeuwenhoek. 2013 May;103(5):1069-78 [PMID: 23361994]
  130. Nature. 2000 Aug 31;406(6799):959-64 [PMID: 10984043]
  131. Front Microbiol. 2017 Apr 24;8:682 [PMID: 28484436]
  132. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4927-32 [PMID: 12684534]
  133. Methods Mol Biol. 2017;1520:23-47 [PMID: 27873244]
  134. J Nat Prod. 2008 Sep;71(9):1585-90 [PMID: 18722414]
  135. J Bacteriol. 2000 Mar;182(5):1286-95 [PMID: 10671449]
  136. Structure. 1995 Jun 15;3(6):521-5 [PMID: 8590011]
  137. Int J Syst Evol Microbiol. 2008 Apr;58(Pt 4):924-8 [PMID: 18398196]
  138. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):155-76 [PMID: 26739136]
  139. Microbiol Rev. 1996 Jun;60(2):407-38 [PMID: 8801440]
  140. Antonie Van Leeuwenhoek. 2010 Aug;98(2):119-42 [PMID: 20582471]
  141. Stand Genomic Sci. 2011 Oct 15;5(1):97-111 [PMID: 22180814]
  142. J Bacteriol. 2014 Jun;196(12):2210-5 [PMID: 24706738]
  143. J Gen Microbiol. 1983 Jun;129(6):1743-813 [PMID: 6631406]
  144. Syst Appl Microbiol. 2004 Mar;27(2):166-74 [PMID: 15046305]
  145. Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43 [PMID: 25948579]
  146. Nat Prod Rep. 2016 Aug 27;33(8):988-1005 [PMID: 27272205]
  147. Antonie Van Leeuwenhoek. 2017 Apr;110(4):563-583 [PMID: 28039547]
  148. Int J Syst Evol Microbiol. 2016 Aug;66(8):3071-3077 [PMID: 27169368]
  149. J Antibiot (Tokyo). 2011 Jan;64(1):35-44 [PMID: 21081954]
  150. Antimicrob Agents Chemother (Bethesda). 1964;10:24-32 [PMID: 14287938]
  151. Nat Biotechnol. 2017 Jul;35(7):676-683 [PMID: 28604660]
  152. Int J Syst Evol Microbiol. 2016 Sep;66(9):3509-3514 [PMID: 27282917]
  153. J Gen Appl Microbiol. 2007 Oct;53(5):287-93 [PMID: 18057819]
  154. Int J Syst Evol Microbiol. 2010 Jun;60(Pt 6):1328-1333 [PMID: 19667372]
  155. PLoS Biol. 2014 Aug 05;12(8):e1001920 [PMID: 25093819]
  156. Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):570-575 [PMID: 22523170]
  157. Int J Syst Evol Microbiol. 2006 Oct;56(Pt 10):2381-2385 [PMID: 17012566]
  158. J Biosci. 2013 Nov;38(4):685-93 [PMID: 24287646]
  159. J Antibiot (Tokyo). 1989 Sep;42(9):1449-52 [PMID: 2793600]
  160. ISME J. 2010 Oct;4(10):1265-81 [PMID: 20445637]
  161. Nucleic Acids Res. 2010 Jul;38(13):4207-17 [PMID: 20215432]
  162. Bioinformatics. 2009 Sep 1;25(17):2271-8 [PMID: 19561336]
  163. Commun Integr Biol. 2010 Mar;3(2):130-8 [PMID: 20585504]
  164. Bioinformatics. 2013 Jul 15;29(14):1823-4 [PMID: 23740744]
  165. Front Microbiol. 2015 Dec 01;6:1341 [PMID: 26648923]
  166. FEMS Microbiol Rev. 2014 May;38(3):345-79 [PMID: 24164321]
  167. Microbiology (Reading). 2008 Jan;154(Pt 1):16-29 [PMID: 18174122]
  168. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  169. Science. 2000 Sep 15;289(5486):1902-6 [PMID: 10988064]
  170. DNA Repair (Amst). 2008 Mar 1;7(3):353-79 [PMID: 17951115]
  171. Crit Rev Biotechnol. 2012 Jun;32(2):108-32 [PMID: 21619453]
  172. Nature. 2009 Dec 24;462(7276):1056-60 [PMID: 20033048]
  173. Antimicrob Agents Chemother. 1975 Mar;7(3):246-9 [PMID: 1137376]
  174. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  175. Antimicrob Agents Chemother. 2015;59(6):3174-9 [PMID: 25779576]
  176. J Gen Appl Microbiol. 2005 Aug;51(4):229-34 [PMID: 16205030]
  177. Int J Syst Evol Microbiol. 2010 Mar;60(Pt 3):648-652 [PMID: 19656925]
  178. J Ind Microbiol Biotechnol. 2017 May;44(4-5):573-588 [PMID: 27520548]
  179. Stand Genomic Sci. 2013 Dec 17;9(3):1278-84 [PMID: 25197443]
  180. Appl Microbiol Biotechnol. 2012 Nov;96(3):749-61 [PMID: 22576944]
  181. Int J Syst Evol Microbiol. 2005 Mar;55(Pt 2):877-880 [PMID: 15774678]
  182. Front Plant Sci. 2014 Aug 19;5:406 [PMID: 25237311]
  183. Int J Syst Evol Microbiol. 2015 Dec;65(12):4417-4423 [PMID: 26358439]
  184. Syst Appl Microbiol. 2016 Jun;39(4):237-242 [PMID: 27220477]
  185. Appl Environ Microbiol. 2012 Oct;78(19):6859-65 [PMID: 22820327]
  186. Nat Rev Microbiol. 2005 Sep;3(9):733-9 [PMID: 16138101]
  187. Int J Syst Evol Microbiol. 2011 Feb;61(Pt 2):320-324 [PMID: 20305066]
  188. J Antibiot (Tokyo). 2017 Apr;70(4):448-453 [PMID: 27353167]
  189. Crit Rev Food Sci Nutr. 2018;58(14):2314-2333 [PMID: 28609133]
  190. Int J Syst Evol Microbiol. 2008 Jun;58(Pt 6):1432-41 [PMID: 18523191]
  191. Int J Syst Evol Microbiol. 2010 Jan;60(Pt 1):249-266 [PMID: 19700448]
  192. Int J Syst Evol Microbiol. 2013 Oct;63(Pt 10):3812-3817 [PMID: 23667141]
  193. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):352-356 [PMID: 24505073]
  194. FEMS Microbiol Lett. 1999 Sep 15;178(2):349-54 [PMID: 10499285]
  195. J Mol Biol. 1991 Mar 5;218(1):129-40 [PMID: 1848300]
  196. J Comput Biol. 2010 Mar;17(3):337-54 [PMID: 20377449]
  197. PLoS One. 2014 Sep 30;9(9):e108522 [PMID: 25268993]
  198. Open Biol. 2013 Oct 23;3(10):130073 [PMID: 24153003]
  199. Int J Syst Evol Microbiol. 2017 Feb;67(2):268-274 [PMID: 27902235]
  200. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  201. J Bacteriol. 1985 Jun;162(3):1342-4 [PMID: 3997781]
  202. Nat Rev Microbiol. 2015 Aug;13(8):509-23 [PMID: 26119570]
  203. Int J Syst Evol Microbiol. 2007 Dec;57(Pt 12):2799-2804 [PMID: 18048727]
  204. Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43 [PMID: 26609051]
  205. Antonie Van Leeuwenhoek. 2012 Jan;101(1):13-20 [PMID: 22038177]
  206. Appl Environ Microbiol. 1999 May;65(5):2072-7 [PMID: 10224003]
  207. Arch Microbiol. 2013 Jun;195(6):413-8 [PMID: 23591456]
  208. J Antibiot (Tokyo). 2003 Mar;56(3):226-31 [PMID: 12760678]

MeSH Term

Base Composition
Genome, Bacterial
Industrial Microbiology
Micromonospora
Phylogeny

Word Cloud

Created with Highcharts 10.0.0strainsmicromonosporaetypepotentialgenusMicromonosporabiotechnologicalecologicaldraftgenomesshowedcorrespondingsequencesgenesgenomedatadescriptionsclusterskeyneedclarifyrelationshipswithinactinobacterialfamilyMicromonosporaceaegivenimportance40twonon-typemadeavailableGenomicEncyclopediaBacteriaArchaeaprojectusedgeneratephylogenomictreeassignedwellsupportedphyleticlinesevidenttreesbasedsingleconcatenatedconservedDNAG+CratiosderivedspeciesimpreciseEmendedincludeprecisebasecompositionapproximatesizesantiSMASHanalysesshowpreviouslyunrealisedsynthesizenovelspecializedmetabolitesCloseonethousandbiosyntheticgenedetectedincludingNRPSPKSterpenessiderophoresdiscontinuouslydistributedtherebyopeningprospectprioritisinggiftednaturalproductdiscoverydistributionstressrelatedprovideinsightadaptenvironmentalvariablesGenesassociatedplantinteractionshighlightuseagriculturebiotechnologyGenome-basedclassificationfocus

Similar Articles

Cited By