Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities.

J Goordial, Ianina Altshuler, Katherine Hindson, Kelly Chan-Yam, Evangelos Marcolefas, Lyle G Whyte
Author Information
  1. J Goordial: Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
  2. Ianina Altshuler: Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
  3. Katherine Hindson: Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
  4. Kelly Chan-Yam: Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
  5. Evangelos Marcolefas: Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.
  6. Lyle G Whyte: Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada.

Abstract

Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology missions will certainly target these areas and there is a need for direct life detection instrumentation.

Keywords

References

  1. Astrobiology. 2017 Aug;17(8):747-760 [PMID: 28704064]
  2. Gigascience. 2017 Mar 1;6(3):1-10 [PMID: 28327976]
  3. FEMS Microbiol Ecol. 2016 Feb;92(2): [PMID: 26637477]
  4. Astrobiology. 2010 Oct;10(8):821-43 [PMID: 21087162]
  5. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  6. Science. 2006 Mar 10;311(5766):1419-22 [PMID: 16527970]
  7. Astrobiology. 2008 Oct;8(5):909-19 [PMID: 18950287]
  8. mBio. 2016 Feb 09;7(1):e01948-15 [PMID: 26861018]
  9. PLoS One. 2012;7(11):e47768 [PMID: 23185243]
  10. Nat Methods. 2017 Apr;14(4):407-410 [PMID: 28218898]
  11. Astrobiology. 2012 Apr;12(4):347-60 [PMID: 22519974]
  12. Appl Environ Microbiol. 2010 Apr;76(8):2445-50 [PMID: 20173072]
  13. Astrobiology. 2010 Sep;10(7):705-10 [PMID: 20929400]
  14. mSystems. 2016 Jun 28;1(3): [PMID: 27822530]
  15. Gene. 2016 Jul 25;586(2):239-47 [PMID: 27063562]
  16. Astrobiology. 2011 Jan-Feb;11(1):15-28 [PMID: 21294639]
  17. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  18. Astrobiology. 2015 Jun;15(6):413-9 [PMID: 26053735]
  19. Can J Microbiol. 2011 Apr;57(4):303-15 [PMID: 21491982]
  20. ISME J. 2015 Aug;9(8):1880-91 [PMID: 25871932]
  21. BMC Bioinformatics. 2008 Sep 19;9:386 [PMID: 18803844]
  22. Science. 2014 Jan 24;343(6169):1242777 [PMID: 24324272]
  23. FEMS Microbiol Ecol. 2012 Jul;81(1):111-23 [PMID: 22329626]
  24. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):E5123-32 [PMID: 25404343]
  25. Sci Rep. 2017 Dec 21;7(1):18022 [PMID: 29269933]
  26. Science. 2003 Nov 7;302(5647):1018-21 [PMID: 14605363]
  27. Curr Opin Microbiol. 2015 Feb;23:110-20 [PMID: 25461581]
  28. Nat Methods. 2011 Jan;8(1):61-5 [PMID: 21102452]
  29. J Biomol Tech. 2017 Apr;28(1):2-7 [PMID: 28337073]
  30. PLoS One. 2017 Jun 5;12(6):e0178751 [PMID: 28582401]
  31. Bioinformatics. 2014 Dec 1;30(23):3399-401 [PMID: 25143291]
  32. Sci Rep. 2016 Jun 28;6:28625 [PMID: 27350167]
  33. Science. 1999 Mar 5;283(5407):1470-1 [PMID: 10206878]
  34. J Microbiol Methods. 2009 Oct;79(1):55-61 [PMID: 19647767]
  35. Front Microbiol. 2017 May 29;8:946 [PMID: 28611748]
  36. Environ Microbiol. 2017 Feb;19(2):443-458 [PMID: 27129741]
  37. ISME J. 2016 Jul;10(7):1613-24 [PMID: 27323892]
  38. Nature. 2015 Jan 22;517(7535):455-9 [PMID: 25561178]

Word Cloud

Created with Highcharts 10.0.0detectionMinIONlifelowsequencingusinginstrumentationicepermafrostMarscryo-iPlateMAMplateastrobiologycostmasspolygonalterrainCanadianArctic79°26'NusedmicroorganismsMicrobialenvironmentalsamplesobtainedidentifiedactivecommunitySignificantprogressmadedevelopmentnextgenerationmuchsmallersizeenergyrequirementsdescribefieldsoilslayingwedgesAxelHeibergIslandlocatedhighanalogobservedmethodsinclude1culturingdiffusionsitunutrientssemi-solidmedia2ActivityMicroassayBIOLOGEcoplatedetectingviableextantcolourimetricassay3OxfordNanoporenucleicacidproducts39microbialisolatesincludedseveralputativelynovelstrainsbased16SrRNAgeneincludingsp96%closestsimilarityGenBankpartiallygenomesequencedsuccessfullycapableL-serinemetabolismmetagenomicidentifyenrichedmetagenomewedgesoilcompletedbasecallinguplink/downlinkcarriedviasatelliteinternetValidationIlluminaMiSeqplatformconsistentresultstechnologyutilizedpre-existingvolumeoffersprospectequippingmicro-roversmicro-penetratorsaggressiveastrobiologicalcapabilitiesSincepotentiallyhabitabletargetsRSLsnearsubsurfacewaterplumesoceansEuropaEnceladusfuturemissionswillcertainlytargetareasneeddirectFieldSequencingLifeDetectionRemoteHighPermafrostIceWedgeCommunitiesnanoporepolarmicrobiology

Similar Articles

Cited By (44)